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1 Matrix Lie Groups

Throughout this section, we shall let F = R or C.

Definition 1.1. Let K be a field. We define the general linear group of degree n over
K, denoted GL(n,K) to be the group of all n× n invertible matrices with group operation
given by matrix multiplication.

Remark. GL(n,K) is an n×n dimensional vector space over K. Given a norm on || · || on
K, we can define a norm on GL(n,K), say || · ||M as follows:

||A||M =
n∑
i=1

n∑
j=1

||Aij||

Recall that all norms on finite dimensional vector spaces over locally compact fields (such
as F) are equivalent. Hence over a locally compact field K, all norms on GL(n,K) are
equivalent.

Definition 1.2. We define a matrix Lie group to be a topologically closed subgroup of
GL(n,F) for some n ≥ 1.

Example 1.3. GL(n,F) is a matrix Lie group since the whole group is closed in itself.

Example 1.4. Let SL(n,F) = {A ∈ GL(n,F) | detA = 1 }. Then SL(n,F) is a matrix Lie
group. Indeed, the function

det : GL(n,F)→ F
A 7→ detA

is continuous. Then SL(n,F) = det−1({ 1 }). Recall that the inverse image of a closed set
under a continuous map is closed and so SL(n,F) is closed.

Example 1.5. Let O(n,F) = {A ∈ GL(n,F) | AtA = 1n }. Then O(n,F) is a matrix Lie
group. Indeed, the function

φ : GL(n,F)→ GL(n,F)

A 7→ AtA

is continuous. Then O(n,F) = φ−1({1n }). {1n } is clearly closed whence O(n,F) is closed.
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Example 1.6. Let SO(n,F) = {A ∈ GL(n,F) | AtA = 1n, detA = 1 }. Then SO(n,F) is a
matrix Lie group. Indeed, SO(n,F) = det−1({ 1 }) ∩ φ−1({1n }). This is the intersection of
two closed sets so it is again a closed set.

Example 1.7. The same argumentation as the previous examples applies to the groups
U(n,F) = {A ∈ GL(n,F) | A†A = 1 } and SU(n,F) = {A ∈ GL(n,F) | A†A = 1, detA = 1 }.

Definition 1.8. Let G1 and G2 be matrix Lie groups over F. A Lie group homomor-
phism ϕ : G1 → G2 is a continuous group homomorphism from G1 to G2.

Definition 1.9. Let K be a field and (V, || · ||) a normed K-vector space. We say that a
subset W ⊆ V is compact if W is closed and bounded with respect to || · ||.

Example 1.10. O(n,F), SO(n,F),U(n,F), SU(n,F) are all compact. Indeed, consider the
case of O(n,F). Let A ∈ O(n,F). Then AtA = 1n means that

n∑
k=1

a2
ik = 1

for all 1 ≤ i ≤ n. Hence ||aik|| ≤ 1 for all 1 ≤ i ≤ k ≤ n. It then follows that ||A|| ≤ n2

whence A is bounded. Since O(n,F) was shown to be closed, we see that O(n,F) is compact.
The same argumentation holds for the other cases.

SL(n,F) (for n ≥ 2) and GL(n,F) are not compact since they contain matrices whose
norms grow arbitrarly large. For example, in the SL(n,F) case, let λ 6= 0 and consider the
diagonal matrix whose entries are all 1s except for a λ and λ−1. Then this matrix is clearly
in SL(n,F) and its norm grows arbitrarily large as λ→∞.

Definition 1.11. Let G be a matrix Lie group. We say that G is path-connected if for
all A,A′ ∈ G, there exists a continuous mapping called a path p : [0, 1] → G such that
p(0) = A′ and p(1) = A.

Proposition 1.12. U(n,F) is path-connected.

Proof. By elementary linear algebra, every matrix V ∈ U(n,F) is unitarily diagonalisable.
Hence there exists a unitary matrix V ∈ U(n,F) and θj ∈ R such that

V = V diag(eiθ1 , . . . , eiθn)V
−1

Now define

V (t) = V diag(eiθ1(1−t), . . . , eiθn(1−t))V
−1

then V (t) is a continuous function satisfying V (0) = V and V (1) = 1n. We see that any
unitary matrix is path-connected to the identity element whence U(n,F) is path-connected.

Proposition 1.13. O(n,F) is not path-connected.

Proof. Let A,A′ ∈ O(n,F). Then detA and detA′ are ±1. Recall that det is a con-
tinuous function on O(n,F). By elementary topology, the continuous image of a path-
connected space is path-connected. Hence if O(n,F) were to be path connected, so would
det(O(n,F)) = {−1, 1 }. This is clearly not path-connected so O(n,F) cannot be path-
connected.
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Proposition 1.14. Let G be a matrix Lie group. The connected component of the identity
(in other words, all elements of G that are path-connected to 1n) is a subgroup of G.

Proof. Let A,B ∈ G and suppose that A(t) and B(t) are paths in G from 1n to A and B
respectively. Then A(t)B(t) is a path from 1n to AB and A(t)−1 is a path from 1n to A−1.
Hence if A and B are in the connected component of 1n, so is AB and A−1 whence the
connected component of 1n is a subgroup of G.

Example 1.15. SO(n,F) is the connected component of the identity in O(n,F).

Definition 1.16. Let G be a matrix Lie group. We say that G is simply connected if
every closed path can be deformed continuously to a constant path.

Example 1.17. We have SU(2,F) ∼= S3 and is thus simply-connected since loops on spheres
can be continuously shrunk to points.

2 Matrix Exponential

Proposition 2.1. Let A ∈ Mat(n,F). Then

expA =
∞∑
n=0

1

n!
An

is absolutely convergent and satisfies

1. exp(0) = 1n

2. If AB = BA then exp(A+B) = exp(A) exp(B)

3. exp(A)−1 = exp(−A)

4. If C is invertible then C exp(A)C−1 = exp(CAC−1)

Proof. We have that

|| exp(A)|| ≤
∞∑
n=0

1

n!
(||A||) <∞

so exp(A) converges absolutely.

Part 1: This is clear upon inserting the zero matrix into the definition of the matrix
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exponential.

Part 2: Let A,B ∈ Mat(n,F) be such that AB = BA. Then by the Binomial Theorem, we
have

exp(A+B) =
∞∑
n=0

1

n!
(A+B)n

=
∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
AkBn−k

=
∞∑
n=0

n∑
k=0

1

k!
Ak

1

(n− k)!
Bn−k

=
∞∑
n=0

∑
n=m+k

1

k!
Ak

1

m!
Bm

=
∞∑
n=0

∞∑
m=0

1

n!
An

1

m!
Bm

=

(
∞∑
n=0

1

n!
An

)(
∞∑
m=0

1

m!
Bm

)
= exp(A) exp(B)

Part 3: Let A ∈ Mat(n,F). Clearly, A commutes with −A so by Part 2, we have
exp(A) exp(−A) = exp(A− A) = 1n. Hence, exp(A)−1 = exp(−A).

Part 4: This follows immediately upon left-multiplying and right-multiplying exp(A) by C
and C−1 respectively.

Proposition 2.2. Let A ∈ Mat(n,C). Then

det eA = eTrA

Proof. Since C is algebraically closed, A is diagonalisable so we can write A = PDP−1 for
some diagonal matrix D ∈ Mat(n,C) with diagonal elements λ1, . . . , λn and some invertible
P ∈ Mat(n,C). Then eA = PeDP−1

det(eA) = det(P ) det(eD) det(P−1) = det(eD) = eλ1 · · · eλn = eλ1+···+λn = eTrD = eTrA

Now, the diagonal matrices are dense in Mat(n,C) and det and eX are continuous functions
so the equality must hold for all of Mat(n,C) by continuity.

Proposition 2.3. Let A ∈ Mat(n,F). Then the map t 7→ exp(tA) is a smooth curve through
1n in Mat(n,F) and

d

dt
etA = AetA = etAA

In particular,

d

dt
etA
∣∣∣∣
t=0

= A
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Proof. Since exp(A) is absolutely convergent, differentiation with respect to a parameter is
possible. The proof then follows as in the case of real numbers.

Proposition 2.4. Let A ∈ Mat(n,C) be such that ||A− 1n|| < 1. Then

log(A) = −
∞∑
m=1

(−1)m

m
(A− 1n)m

is absolutely convergent and

1. exp(log(A)) = A

2. log(exp(B)) = B if ||B|| ≤ log 2

Proof. The series only exists when ||A−1n|| < 1. The two properties follow in the same way
as for the real numbers (infact, they hold in any formal power series ring over a field such as
R). The log 2 condition is necessary to ensure that exp(B) is in the radius of convergence
of log.

Proposition 2.5 (Trotter Product Formulae). Let A,B ∈ Mat(n,F). Then we have the
following two formulas:

exp(A+B) = lim
n→∞

[
exp

(
A

n

)
exp

(
B

n

)]n
exp([A,B]) = lim

n→∞

[
exp

(
A

n

)
exp

(
B

n

)
exp

(
−A
n

)
exp

(
−B
n

)]n2

where [A,B] is the commutator AB −BA.

Proof. Omitted.

Theorem 2.6 (Baker-Campbell-Hausdorff Formula). Let X, Y ∈ Mat(n,C) such that ||X||+
||Y || < log 2. Then exp(X) exp(Y ) = exp(Z) where

Z =
∑
n>0

(−1)n−1

n

∑
ri+si>0
1≤i≤n

Xr1Y s1 . . . XrnY sn

r1!s1! · · · rn!sn!

where XrnY sn . . . XrnY sn = [X, [X, . . . , [X︸ ︷︷ ︸
r1

, [Y, [Y, . . . [Y︸ ︷︷ ︸
s1

, . . . [X, [X, . . . [X︸ ︷︷ ︸
rn

, [Y, [Y, . . . Y ]]︸ ︷︷ ︸
sn

. . . ]]

Proof. Omitted.

Remark. The first few terms of the BCH Formula are

Z = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]] +

1

12
[Y, [Y,X]] + . . .

3 Lie Algebras of Matrix Lie Groups

Throughout this section, F = R or C.
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Definition 3.1. Let F be a field. A Lie algebra is an F-vector space L equipped with a
bilinear map [·, ·] : L × L → L called the Lie bracket satisfying [X, Y ] = −[Y,X] for all
X, Y ∈ L and the Jacobi identity

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0

for all X, Y, Z ∈ L.

Proposition 3.2. Let G be a matrix Lie group over F. Then

Lie(G) = {X ∈ Mat(n,F) | exp(tX) ∈ G ∀ t ∈ R }

is a Lie algebra over R. We shall call this the Lie algebra of G.

Proof. Let g = Lie(G). We first show that g is a R-vector space. Let X ∈ g and s ∈ R.
Then

X ∈ g =⇒ estX ∈ G ∀ t ∈ R =⇒ et(sX) ∈ G ∀ t ∈ R =⇒ sX ∈ g

Now let X, Y ∈ g. Then by the Trotter Product Formula, we have

et(X+Y ) = lim
n→∞

[
exp

(
tX

n

)
exp

(
tY

n

)]n
Now, exp(tX/n), exp(tY/n) ∈ G for all n and hence so is their product. Since G is closed,
the above limit is in G and so exp(t(X + Y )) ∈ G for all t ∈ R whence X + Y ∈ g.

We now show that g possesses a Lie bracket. We claim that the matrix commutator
[A,B] = AB−BA is such a commutator. It is clearly R-linear, anti-symmetric and satisfies
the Jacobi identity. It suffices to show that if X, Y ∈ g then [X, Y ] ∈ g. We have that

exp(t[A,B]) = exp([tA, tB]) = lim
n→∞

[
exp

(
tA

n

)
exp

(
tB

n

)
exp

(
−tA
n

)
exp

(
−tB
n

)]n2

By analysis similar to the above, this limit is contained in G and so [A,B] ∈ g.

Example 3.3. We have an isomorphism of groups R>0
∼= eR so Lie(R>0) = R. Similarly,

U(1,C) ∼= eiR so Lie(U(1,C)) = iR.

Example 3.4. Consider the matrix Lie group G = GL(n,F). Then for any X ∈ Mat(n,F),
X ∈ g = Lie(G) if and only if etX is invertible for all t ∈ R. This is clearly true so
g = Mat(n,F).

Example 3.5. Consider the matrix Lie group G = SL(n,F). Then for any X ∈ Mat(n,F),
X ∈ g = Lie(G) if and only if etX is invertible and det etX = 1. This matrix is clearly
invertible. We have that

1 = det etX = eTr tX = etTrX

which is true for all t ∈ R if and only if TrX = 0. Hence, g = sl(n,F) = {A ∈ Mat(n,F) | TrA = 0 }.

Example 3.6. Consider the matrix Lie group G = O(n,F). Then for any X ∈ Mat(n,F),
X ∈ g = Lie(G) if and only if etX(etX)t = 1n for all t ∈ R. Expanding this out we have

(1n + tX +O(t2))(1n + tX t +O(t2)) = 1n
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whence X = −X t. It then follows that

(etx)t = etX
t

= e−tX = (etX)−1

and so etX ∈ O(n,F). We therefore have that

g = o(n,F) = {X ∈ Mat(n,F) | X = −X t }

Furthermore, note that X = −X t implies that TrX = 0 and so det(etX) = 1. It then follows
that etX ∈ SO(n,F) and so Lie(SO(n,F)) = g.

Example 3.7. Similarly to the previous example, we can show that

Lie(U(n,F)) = {X ∈ Mat(n,F) | X = −X† }

However, X = −X† does not guarantee that TrX = 0 so

Lie(SU(n,F)) = {X ∈ Mat(n,F) | X = −X†,TrX = 0 }

Proposition 3.8. Let G be a matrix Lie group and X ∈ Lie(G). Then given any A ∈ G
we have AdA(X) = AXA−1 ∈ Lie(G). This is referred to as the adjoint action of A on
Lie(G).

Proof. Given t ∈ R, We have that

etAXA
−1

= AetXA−1

but X ∈ Lie(G) so etX ∈ G whence AXA−1 ∈ Lie(G).

Theorem 3.9. Let G be a matrix Lie group. Then there exists a neighbourhood U of zero
in Lie(G) and a neighbourhood V of 1n in G such that exp maps U homeomorphically onto
V .

Proof. Omitted.

Corollary 3.10. Let G be a path-connected matrix Lie group. Then every A ∈ G admits a
decomposition

A = eX1 · · · eXn

for some Xi ∈ Lie(G).

Proof. Let E be the collection of all matrices A ∈ G that admit a decomposition into the
hypothesised form. By Theorem 3.9, E contains a neighbourhood of 1n say V . In particular,
E is non-empty. Now, given any other A ∈ E, we have that AV is a neighbourhood of A
and so E is open in G.

On the other hand, we claim that G is also closed. Suppose {An } ⊆ E is a sequence
such that An → A ∈ G as n → ∞. Clearly, A−1

n for all n. Hence A−1
n A → 1n as n → ∞.

Hence, A−1
n A ∈ V for large enough n. Hence A = Ane

Xn for some Xn ∈ Lie(G). This is
a product of elements in E so A ∈ E. Hence E contains all its limit points whence E is
closed.

Finally, recall that the only clopen sets in the path-connected space X, the only clopen
sets are ∅ and X. Since E is necessarily non-empty, we must have that E = G. Hence
every element of G admits such a decomposition.
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Definition 3.11. Let G be a matrix Lie group. A one-parameter subgroup of G is a
continuous group homomorphism ϕ : R→ G.

Proposition 3.12. Let G be a matrix Lie group and ϕ a one-parameter subgroup of G.
Then there exists X ∈ Lie(G) such that ϕ(t) = exp(tX) for all t ∈ R.

Proof. By the definition of ϕ, we have that ϕ(0) = 1n. Hence for sufficiently small t0, we
have ϕ(t0) ⊆ exp(Lie(G)) by Theorem 3.9. Now let

X(t) =
1

t
log(ϕ(t))

Then for t ≤ t0, we have etX(t) ∈ exp(Lie(G)). Now, given arbitrary t ∈ R and for all N ≥ 1
we have

ϕ(t) = ϕ

(
N∑
i=1

t

N

)
=

[
ϕ

(
t

N

)]N
=

[
exp

(
t

N
X

(
t

N

))]N
= exp

(
tX

(
t

N

))
We can now choose N so that |t/N | ≤ t0 so that the right hand side of the above is an
element of expLie(G).

Corollary 3.13. Let G be a matrix Lie group and ϕ a one-parameter subgroup of G. Then
ϕ is smooth.

Proposition 3.14. Let G be a path-connected matrix Lie group and H an arbitrary matrix
Lie group. If ϕ : G → H is a continuous homomorphism of matrix Lie groups then ϕ is
smooth.

Proof. First assume that A ∈ G is contained in a neighbourhood of the identity 1n. By
Corollary 3.10, A admits a decomposition

A = et1X1 · · · etnXn

where ti ∈ R and Xi ∈ Lie(G). Then

ϕ(A) = ϕ(et1X1) · · ·ϕ(etnXn)

each of these is a one-parameter subgroup in the variables ti. Since one-parameter subgroups
are smooth and products of smooth functions are smooth, it follows that ϕ is smooth.

To see that ϕ is smooth on all of G, it suffices to realise that left-translation is a diffeo-
morphism of G so, any open neighbourhood B is diffeomorphic to an open neighbourhood
of 1n.

Theorem 3.15. Let G1 and G2 be matrix Lie groups and ϕ : G1 → G2 a homomorphism
of matrix Lie groups. Then there exists a unique R-linear map ϕ : Lie(G1)→ Lie(G2) such
that

1. ϕ(eX) = eϕ(X) for all X ∈ Lie(G1)

2. ϕ(AXA−1) = ϕ(A)ϕ(X)ϕ(A)−1 for all X ∈ Lie(G1), A ∈ G

3. ϕ([X, Y ]) = [ϕ(X), ϕ(Y )] for all X, Y ∈ Lie(G1)

4. ϕ(X) = d
dt

(ϕ(etX))|t=0
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Proof. Let g = Lie(G1) and h = Lie(G2). Since ϕ is continuous, ϕ(etX) is a one-parameter
of subgroup of G2 for each X ∈ G1. By Proposition 3.12, there exists a unique Z such that

ϕ(etX) = etZ

for all t ∈ R. Since ϕ(etX) ∈ G2, it follows that Z ∈ h. We shall take ϕ(X) = Z.

Part 1: This follows directly from the definition of ϕ by taking t = 1. We shall use this to
show that ϕ is a linear map. Let s ∈ R. We need to show that ϕ(sX) = sϕ(X). We have
that

etsϕ(X) = ϕ(etsX) = etϕ(sX)

for all t ∈ R. We must next show that if X, Y ∈ g then ϕ(X + Y ) = ϕ(X) + ϕ(Y ). For all
t ∈ R we have

etϕ(X+Y ) = eϕ(t(X+Y )) = ϕ(et(X+Y ))

By the Trotter Product Formula and the fact that ϕ is continuous, we have

etϕ(X+Y ) = ϕ

[
lim
n→∞

(
exp

(
tX

n

)
exp

(
tY

n

))n]
= lim

n→∞

[
ϕ

(
exp

(
tX

n

))
ϕ

(
exp

(
tY

n

))]n
= lim

n→∞
(etϕ(X)/netϕ(X)/n)n

= et(ϕ(X)+ϕ(Y ))

and so ϕ(X + Y ) = ϕ(X) + ϕ(Y ) as desired.

Part 2: We now show that ϕ(AXA−1) = ϕ(A)ϕ(X)ϕ(A)−1 for all X ∈ g and A ∈ G. We
have that

etϕ(AXA−1) = eϕ(tAXA−1)

= ϕ(etAXA
−1

)

= ϕ(AetXA−1)

= ϕ(A)ϕ(etX)ϕ(A)−1

= ϕ(A)etϕ(X)ϕ(A)−1

and so ϕ(AXA−1) = ϕ(A)ϕ(X)ϕ(A)−1 as desired.

Part 3: We now show that ϕ([X, Y ]) = [ϕ(X), ϕ(Y )] for all X, Y ∈ g. It is easy to see
using the product rule that the following identity holds:

[X, Y ] =
d

dt
(etXY e−tX)

∣∣∣∣
t=0

Hence

ϕ([X, Y ]) = ϕ

(
d

dt
(etXY e−tX)

∣∣∣∣
t=0

)
=

d

dt
ϕ(etXY e−tX)

∣∣∣∣
t=0
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By Part 2 we then have

ϕ([X, Y ]) =
d

dt
ϕ(etX)ϕ(Y )ϕ(etX)

∣∣∣∣
t=0

=
d

dt
etϕ(X)ϕ(Y )e−tϕ(X)

∣∣∣∣
t=0

= [ϕ(X), ϕ(Y )]

as required.

Part 4: This follows directly from the definition of ϕ.

Theorem 3.16. Let G1 and G2 be matrix Lie groups and ϕ, ψ : G1 → G2 a homomorphism.
Let ϕ, ψ : Lie(G1) → Lie(G2) be the induced linear maps of Lie algebras. If G1 is path-
connected and ϕ = ψ then ϕ = ψ.

Proof. Since G1 is connected, every A ∈ G1 admits a decomposition

A = eX1 . . . eXn

where Xi ∈ Lie(G1). Now, if ϕ = ψ we have

ϕ(eX1 · · · eXn) = eϕ(X1)···ϕ(Xn) = eψ(X1)···ψ(Xn) = ψ(eX1 · · · eXn)

Theorem 3.17. Let G1 and G2 be matrix Lie groups with associated Lie algebras g1 and
g2 respectively. Let α : g1 → g2 be a Lie algebra homomorphism. If G1 is path-connected
and simply connected then there exists a unique Lie group homomorphism φ : G1 → G2 such
that φ = α.

Proof. Omitted.

Corollary 3.18. Let G1 and G2 be path-connected and simply connected matrix Lie groups
with associated Lie algebras g1 and g2 respectively. Then G1

∼= G2 ⇐⇒ g1
∼= g2.

Theorem 3.19. Let G be a path-connected and simply connected matrix Lie group and g
its associated Lie algebra. If G′ is a matrix Lie group whose Lie algebra is isomorphic to g
then G′ ∼= G/Z for some discrete subgroup Z ⊆ Z(G).1

Proof. Omitted.

Theorem 3.20. Let g be a finite-dimensional Lie algebra. Then g is isomorphic to the Lie
algebra of some matrix Lie group.

1Z(G) is the centre of G: all elements in G that commute
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4 Abstract Lie Algebras

Throughout this section, we will let the base field of the Lie algebras be F = R or C.

Definition 4.1. Let (L, [·, ·]) be a Lie algebra. We say that L is abelian if for all x, y ∈ L
we have [x, y] = 0.

Example 4.2. Let (L, [·, ·]) be a one-dimensional Lie algbera. Then L is abelian. Indeed,
Let x be the single basis element for L. Then, by anti-symmetry we have [x, x] = −[x, x] so
[x, x] = 0. Extending this by bilinearity, we see that [x, y] = 0 for all x, y ∈ L. Hence, over
any field F, there exists only one

Definition 4.3. Let (L1, [·, ·]1 and (L2, [·, ·]2) be Lie algebras over F. A homomorphism
of Lie algebras from L1 to L2 is a F-linear map ϕ : L1 → L2 such that

[ϕ(x), ϕ(y)]2 = ϕ([x, y]1)

for all x, y ∈ L1. We say that ϕ is an isomorphism if it is invertible and an automorphism
if it is an isomorphism and L1 = L2.

Example 4.4. Let V be an F-vector space. Then gl(V ) = End(V ) is a Lie algebra over
F with Lie bracket given by commutator of endomorphisms. For example, if V = Fn then
gl(V ) = Mat(n,F).

Definition 4.5. Let L be a Lie algebra over F. A representation of L on an F-vector
space V is a Lie algebra homomorphism ϕ : L→ gl(V ).

Definition 4.6. Let (L, [·, ·]) be a Lie algebra. Let U, V ⊆ L be linear subspaces of L. We
define [U, V ] to be the linear subspace of L given by

[U, V ] = spanF { [u, v] | u ∈ U, v ∈ V }

Definition 4.7. Let (L, [·, ·]) be a Lie algebra over F. A subspace H ⊆ L is a sub-Lie
algebra if H is closed under the Lie bracket. In other words, [H,H] ⊆ H.

Definition 4.8. Let (L, [·, ·]) be a Lie algebra over F. A subspace H ⊆ L is an ideal if
[L, I] ⊆ I.

Remark. Note that an ideal of a Lie algebra is a sub-Lie algebra.

Lemma 4.9. Let (L1, [·, ·]1) and (L2, [·, ·]2) be Lie algebras over F. Then

1. If I ⊆ L1 is an ideal then

L1/I = {x+ I | x ∈ L1 }

is a Lie algebra over F with Lie bracket given by [x+I, y+I] = [x, y]1+I. Furthermore.
π : L→ L1/I is a surjective homomorphism of Lie algebras.

2. If ϕ : L1 → L2 is a homomorphism of Lie algebras then kerφ is an ideal of L1 and
imφ is a sub-Lie algebra of L2. Furthermore,

L1/ kerφ ∼= imφ

3. If I, J ⊆ L1 are ideals then I + J, I ∩ J and [I, J ] are all ideals of L.
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4. If I, J ⊆ L1 are ideals then

(I + J)/J ∼= I/(I ∩ J)

Proof.

Part 1: The quotient space is always an F-vector space so we just need to show that the Lie
bracket is bilinear, antisymmetric and satisfies the Jacobi identity. To this end, let λ ∈ F
and x, y, z ∈ L1. Then

[(x+ I) + λ(y + I), z + I] = [(x+ λy) + I, z + I] = [x+ λy, z]1 + I

= ([x, z]1 + λ[y, z]1) + I

= ([x, z]1 + I) + (λ[y, z]1 + I)

= [x, z] + λ[y, z]

Hence [·, ·] is linear in the first argument. The same proof works for the second argument
and so the Lie bracket is bilinear. For antisymmetricity, we have

[x+ I, y + I] = [x, y]1 + I = −[y, x]1 + I = −([y, x]1 + I) = −[y, x]

And finally, for the Jacobi identity, we have

[x+ I, [y + I, z + I]] + [z + I, [x+ I, y + I]] + [y + I, [z + I, x+ I]]

= [x+ I, ([y, z]1 + I)] + [z + I, ([x, y] + 1 + I)] + [y + I, ([z, x] + I)]

= ([x, [y, z]1]1 + I) + ([z, [x, y]1]1 + I) + ([y, [z, x]1]1 + I)

= [x, [y, z]1]1 + [z, [x, y]1]1 + [y, [z, x]1]1 + I

= 0 + I

and so [·, ·] satisfies the Jacobi identity. We thus see that L1/I is a Lie algebra.

Part 2: We first show that kerϕ is an ideal of L1. Let x ∈ L1 and y ∈ kerϕ. We need to
show that [x, y] ∈ kerϕ. We have that

ϕ([x, y]1) = [ϕ(x), ϕ(y)]2 = [ϕ(x), 0]2 = 0

Now suppose that x, y ∈ imϕ. We need to show that [x, y]2 ∈ imϕ. There exists a, b ∈ L1

such that ϕ(a) = x, ϕ(b) = y and so

[x, y]2 = [ϕ(a), ϕ(b)]2 = ϕ([a, b]1) ∈ imϕ

We now tackle the isomorphism. Define

π : L1/ kerπ → imπ

x+ kerπ 7→ π(x)

We claim that π is an isomorphism of Lie algebras. We must first check that the mapping
is well-defined. In other words, if x+ kerπ = y+ kerπ then π(x+ kerπ) = π(y+ kerπ). By
hypothesis, we have that (y − x) + ker π = 0 + kerπ. We have that

π(x+ kerπ) = π(x) + π(y − x) = π(y) = π(y + kerπ)
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We must next check that π is indeed a homomorphism of Lie algebras. In other words, we
must check that π preserves the Lie bracket structure. We have that

[π(x+ kerπ), π(y + kerπ)]2 = [π(x), π(y)]2 = π([x, y]1) = π([x, y]1 + kerπ) = π([x+ kerπ, y + kerπ])

To show that π is an isomorphism, we need to show that it is both injective and surjective.
For injectivity, it suffices to show that kerπ is trivial. To this end, let x + kerπ ∈ kerπ.
Then

0 = π(x+ kerπ) = π(x)

It follows that x ∈ kerπ and so x + ker π = 0 + kerπ whence ker π is trivial. Now, for
surjectivity, given y ∈ imπ, we need to find x ∈ L1/ kerπ such that π(x) = y. Since
y ∈ imπ, there exists x ∈ L1 such that π(x) = y. Then

π(x+ kerπ) = π(x) = y

and so π is surjective. We have thus shown that π : L1/ kerπ → imπ is an isomorphism of
Lie algebras.

Part 3: Let a ∈ I, b ∈ J and x ∈ L1. We need to show that [x, a + b]1 ∈ I + J . We have
that

[x, a+ b]1 = [x, a]1 + [x, b] + 1 ∈ I + J

Next, let a ∈ I ∩ J and x ∈ L1. We need to show that [x, a] ∈ I ∩ J . Since I and J are
ideals, [x, a] ∈ I and [x, a] ∈ J so [x, a] ∈ I ∩ J .

Finally, let a ∈ I, b ∈ J and x ∈ L1. We need to show that [x, [a, b]] ∈ [I, J ]. By the
Jacobi identity, we have

[x, [a, b]] = −[b, [x, a]]− [a, [b, x]]

Now since I and J are ideals, [x, a] ∈ I and [b, x] ∈ J . It then follows that the two terms in
the right hand side of the above are elements of [I, J ].

Part 4: Let i1 + j1, i2 + j2 ∈ I + J . Considering these modulo J , we see that the ji are
irrelevant so we are interested in seeing how i1 and i2 can be equivalent modulo J . This
happens exactly when i1−i2 ∈ J . But their difference is also an element of I so i1−i2 ∈ I∩J .

Proposition 4.10. Let (L, [·, ·]) be a Lie algebra. Then the center Z(L) = {x ∈ L | [x, y] = 0∀y ∈ L }
and the commutant [L,L] = { [x, y] | x, y ∈ L } are both ideals. In particular, L/[L,L] is
an abelian Lie algebra.

Proof. Let x ∈ L and y ∈ Z(L). We need to show that [x, y] ∈ Z(L). By definition,
[x, y] = 0. Hence for all z ∈ L we have [z, [x, y]] = [z, 0] = 0 whence [x, y] ∈ Z(G).

Now let [x, y] ∈ [L,L] and z ∈ L. We need to show that [z, [x, y]] ∈ [L,L]. [x, y] is clearly
in L whence [z, [x, y]] ∈ [L,L]. It is easy to see that L/[L,L] is abelian. Indeed, let [·, ·]′ be
the bracket of the quotient space L/[L,L]. We have for all x+ [L,L], y + [L,L] ∈ L/[L,L]

[x+ [L,L], y + [L,L]]′ = [x, y] + [L,L] = 0 + [L,L]

and so L/[L,L] is abelian.

Example 4.11. Let L = gl(n,F) = Mat(n,F). Then the Lie bracket is simply the matrix
commutator. To find the commutant [L,L], let X, Y ∈ L. Then [X, Y ] = XY − Y X. Note
that TrXY − Y X = 0 and so [L,L] = sl(n,F). Now, since traceless matrices are always
commutators of traceless matrices, it follows that [sl(n,F), sl(n,F)] = sl(n,F).
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5 Solvable and Nilpotent Lie Algebras

Definition 5.1. Let L be a Lie algebra. We say that L is simple if L is non-abelian and
has no non-trivial ideals. In other words, its only ideals are { 0 } and L.

Remark. If L is a simple Lie algebra then Z(L) = 0 and [L,L] = L. Indeed, the only ideals
of L are { 0 } and L. Since L is non-abelian, [L,L] is non-empty so we must have [L,L] = L.
The only possibility for Z(L), then, is { 0 }.

Definition 5.2. Let (L, [·, ·]) be a Lie algebra. We define the derived series of L, denoted
DiL to be the sequence of Lie algebras given by D0L = L,Di+1L = [DiL,DiL] for i ≥ 0.
We say that L is solvable if DnL = { 0 } for large enough n.

Proposition 5.3. Let L be a Lie algebra. Then

1. DiL is an ideal of L and in Di−1L. Furthermore, DiL/Di+1L is abelian.

2. If L is abelian then L is solvable.

3. If L is solvable then there exists a finite sequence of ideals { 0 } = In ⊆ In−1 · · · ⊆
I1 ⊆ I0 = L such that I i/I i+1 is Abelian. In particular, I i = DiL.

Proof.

Part 1: We first show that DiL is an ideal in L. We shall prove this by induction on i.
First suppose that i = 0. Then D0L = L which is clearly an ideal. Now suppose that it
holds for n− 1. By the Jacobi identity2, we have

[L,DiL] = [L, [Di−1L,Di−1L]] = −[Di−1L,Di−1L]− [Di−1L, [L,Di−1L]]

⊆ −DiL− [Di−1L,Di−1L]

⊆ DiL

where we have used the induction hypothesis to see that [L,Di−1L] ⊆ Di−1L. Now we look
at DiL as an ideal in Di−1L:

[Di−1L,DiL] = [Di−1L, [Di−1L,Di−1L]] ⊆ [Di−1L,Di−1L] = Di−1L

Where we have used the fact that Di−1L is an ideal in itself so that [Di−1L,Di−1L] ⊆ Di−1L.
Finally, we show that DiL/Di+1L is abelian. Let [·, ·]′ be the Lie bracket on the quotient

space DiL/Di+1L. Suppose that x+Di+1L, y +Di+1L ∈ DiL/Di+1L. Then

[x+Di+1L, y +Di+1L]′ = [x, y] +Di+1L

Now, x, y ∈ DiL and so [x, y] ∈ [DiL,DiL] = Di+1L whence [x, y] +Di+1L = 0 +Di+1L. It
then follows that this quotient space is abelian.

Part 2: If L is abelian then [L,L] = { 0 } and so it solvable.

Part 3: This is just the first part restated.

2here we are abusing notation slightly, interpret addition and multiplication by scalar of subspaces by
what they intuitively should be
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Definition 5.4. Let (L, [·, ·]) be a Lie algebra. We define the lower central series DiL of
L to be the sequence of Lie algebras given by D0L = L and Di+1L = [L,DiL] for i ≥ 0. We
say that L is nilpotent if DnL = { 0 } for sufficiently large n.

Proposition 5.5. Let L be a Lie algebra. Then

1. DiL is an ideal of L and of Di−1L.

2. If L is abelian then L is nilpotent.

Proof. Part 1: We first show that DiL is an ideal in L. We shall prove this by induction
on i. First suppose that i = 0. Then D0L = L which is clearly an ideal in L. Now suppose
that it holds true for i− 1. We have

[L,DiL] = [L, [L,Di−1L]] ⊆ [L,Di−1L] = DiL

where we have used the induction hypothesis to see that [L,Di−1L] ⊆ Di−1L.
To show that DiL is an ideal of Di−1L, we have

[Di−1L,DiL] = [Di−1L, [L,Di−1L]] ⊆ [Di−1L,L] = [L,Di−1L] = DiL

Part 2: Suppose that L is abelian. Then D0L = [L,L] = { 0 } and so L is nilpotent.

Proposition 5.6. Let (L, [·, ·]) be a Lie algebra. Then

1. If L is nilpotent then L is solvable.

2. If L is solvable (nilpotent) then all sub-Lie algebras, quotients L/I for some ideal I ⊆ L
and homomorphic images ϕ(L) are solvable (nilpotent).

3. Let I be an ideal of L such that I is solvable and L/I is solvable. Then L is solvable.

Proof. Part 1: It suffices to show that DiL ⊆ DiL. We prove this by induction. Let i = 0.
Then clearly, D0L = L = D0L. Now, suppose that it holds for i− 1. We have that

DiL = [Di−1L,Di−1L] ⊆ [L,Di−1L] = DiL

Now, since L is nilpotent, for large enough n, we have that

DnL = DiL = { 0 }

whence L is solvable.

Part 2: We shall prove the statements about solvability, the same arguments follow through
for nilpotency. Assume that L is solvable and H ⊆ L is a sub-Lie algebra. We shall show
by induction that DiH ⊆ DiL. If i = 0 then D0H = H ⊆ L = D0L. Now suppose it holds
true for i− 1. We have that

DiH = [Di−1H,Di−1H] ⊆ [Di−1L,Di−1L] = DiL

Hence if DiH is solvable.
Now suppose that I is an ideal and let [·, ·]′ be the commutator of the quotient space

L/I. Recall that the natural quotient map π : L → L/I is surjective. It suffices to
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show that DiL surjects onto DiL/I. We shall prove this by induction. If i = 0 then
π(D0L) = π(L) = L/I = D0(L/I). Now suppose that it holds true for i− 1. Then

π(DiL) = π([Di−1L,Di−1L]) = [π(Di−1L), π(Di−1L)]′ = [Di−1(L/I), Di−1(L/I)] = Di(L/I)

Hence for large enough n, Dn(L/I) = { 0 }.
The same idea works for any other surjective homomorphism of Lie algebras.

Part 3: Let π : L → L/I be the canonical surjection. Note that kerπ = I. Since L/I is
solvable, we have that

{ 0 } = Dn(L/I) = π(DnL)

for large enough n and so DnL ⊆ kerπ = I. Now if I is solvable then DmI = { 0 } for large
enough m. Then

Dn+m(L) = Dm(Dn(L)) ⊆ Dm(I) = { 0 }

and so L is solvable.

Example 5.7. Consider the following sets of matrices:

t(n,F) = {A ∈ Mat(n,F) | Aij = 0 ∀ i > j }
n(n,F) = {A ∈ Mat(n,F) | Aij = 0 ∀i ≥ j }

in other words, t(n,F) and n(n,F) are the collections of all n× n strictly upper triangular
and upper triangular matrices respectively. Both are Lie algebras and [t, t] ⊆ n. Now note
that n is nilpotent. Indeed, mutliplying strictly upper triangular matrices together pushes
the non-zero elements towards the upper right corner of the matrix. This implies that taking
repeated commutators of strictly upper triangular matrices eventually gives zero and so n
is nilpotent. This implies that t is solvable. Indeed, t/[t, t] is abelian and thus solvable.
Furthermore, [t,t] is solvable since it is a sub-Lie algebra of the nilpotent Lie algebra n.
Hence t is solvable.

Lemma 5.8. Let V be an n-dimensional F-vector space, L ⊆ gl(n,F) a Lie algebra and
I ⊆ L an ideal. If λ : I → F is a linear functional and

WI,λ = { v ∈ V | Y v = λ(Y )v ∀Y ∈ I }

Then LWI,λ ⊆ WI,λ

Proof. We need to show that Xw ∈ WI,λ for all w ∈ WI,λ, x ∈ L. In other words, we need
to show that Y Xw = λ(Y )Xw for all Y ∈ I, x ∈ L and w ∈ WI,λ. We have that

Y Xw = XY w + [Y,X]w = X(λ(y)w) + λ([Y,X])w = λ(y)Xw + λ([Y,X])w (1)

It thus suffices to prove that λ([Y,X]) = 0 for all Y ∈ I,X ∈ L. Since V is finite dimensional,
there exists a least natural number m such that the sequence w,Xw,X2w, . . . , Xmw is
linearly independent. Let U be the subspace spanned by these vectors. Fix 0 6= w ∈ WI,λ

and X ∈ L. We first claim that for all Y ∈ I we have

Y X iw = λ(Y )X iw +
∑
j<i

αjX
jw
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for some αj ∈ F. We shall show this by induction on i. For i = 0, this is clear by the
definition of WI,λ. If i = 1 then this holds by Equation 1. Now suppose that it holds true
up to i− 1. Then

Y X iw = [Y,X]X i−1w +XYX i−1w

Now, [Y,X] ∈ I and so, by the induction hypothesis, we have

Y X iw = λ(Y )X iw + X 〉−∞w

which proves the claim. Now, this formula implies that, with respect to the basis w,Xw, . . . , Xmw,
any y ∈ I is represented by an upper triangular matrix, say ρy, with the λ(Y ) on the diag-
onal. Then

Tr ρy = (m+ 1)λ(Y )

for all Y ∈ I. Furthermore, [Y,X] ∈ I and so

(m+ 1)λ([Y,X]) = Tr ρ[Y,X] = Tr([ρY , ρX ]) = 0

This implies that λ([Y,X]) = 0 as required.

Theorem 5.9 (Lie’s Theorem). Let L be a solvable Lie algebra over F and ρ : L→ End(V )
a representation of L on a complex vector space V . Then there exists a non-zero v ∈ V
which is a common eigenvector of ρ(X) for all X ∈ L.

Proof. We prove the theorem by induction on dimF L. First suppose that dimL = 1. Then
ρ(L) is one-dimensional. Picking an element of ρ(L), we can put it into Jordan Normal
Form and then all other elements of ρ(L) will have a common eigenvector with this element
(since they are simply constant multiples of this distinguished element).

Now suppose the claim is true for all solvable Lie algebras L of dimension dimL ≤ n−1.
Let n = dimL. Since L is solvable, we have that [L,L] ( L so we can choose non-zero
X ∈ L\[L,L]. Then we can write L = FX ⊕H for some ideal H ⊆ L such that [L,L] ⊆ H.
Then dimH = n−1 and H is solvable. By the induction hypothesis, there exists 0 6= v0 ∈ V
and λ ∈ H∗ such that ρ(Y )v0 = λY v0 for all Y ∈ H. Now let

WH,λ = { v ∈ V | ρ(Y )v = λ(Y )v ∀Y ∈ H }

By Lemma 5.8, this collection is L-invariant. This implies that ρ(X) is a linear map from
WH,λ to WH,λ. This map can be put into Jordan Normal Form and thus has an eigenvector
w0 ∈ WH,λ. Hence ρ(X)w0 = λXw0 for some λX ∈ C. We can therefore use this to extend
λ ∈ H∗ to λ ∈ L∗ by setting λ|H = λ and λ|FX = λX . This is exactly what it means for
ρ(X) to have a common eigenvector for all X ∈ L.

Corollary 5.10. Let L be a Lie algebra. Then

1. If L is solvable and ρ : L → End(V ) is a representation on a C-vector space V of L
then there exists a basis of V in which all ρ(X) is upper triangular for all X ∈ L.

2. If L is solvable then any irreducible complex representation of L is one-dimensional.

3. L is solvable if and only if [L,L] is nilpotent.

Proof. Omitted.
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Definition 5.11. Let L be a Lie algebra and ρ : L → End(V ) a representation of L on a
vector space V . We say that a subspace W ⊆ V is invariant if ρ(X)W ⊆ W for all X ∈ L.
Furthermore, we say that ρ is irreducible if { 0 } and V are the only invariant subspaces
of V .

Theorem 5.12 (Engel’s Theorem). Let L be a Lie algebra. Then L is nilpotent if and only
if for all X ∈ L, adX : L→ L is nilpotent.

6 Semisimple Lie Algebras and Killing Forms

Definition 6.1. Let L be a Lie algebra over F. We say that L is semisimple if it has no
non-zero solvable ideals. Furthermore, we say that L is reductive if any solvable ideal is
contained in the centre Z(L).

Proposition 6.2. Let L be a Lie algebra over F. Then L has a unique maximal solvable
ideal called the radical ideal and denoted rad(L).

Proof. Let I1 and I2 be solvable ideals in L. We first clam that I1 + I2 is solvable. Recall
that we have an isomorphism of ideals

I + 1 + I2

I1

∼=
I2

I1 ∩ I2

The right hand side is clearly solvable as the quotient of a solvable Lie algebra. Since I1 is
solvable, it follows that I1 + I2 is solvable. By induction, we see that the sum of all solvable
ideals is solvable and is clearly the maximal unique such ideal.

Proposition 6.3. Let L be a Lie algebra. Then

1. L is semisimple if and only if rad(L) = { 0 }.

2. L is reductive if and only if rad(L) = Z(L).

3. L simple =⇒ L semisimple =⇒ L reductive.

4. L/rad(L) is semisimple.

5. L is semisimple if and only if it has no non-zero abelian ideals.

Proof.

Part 1: First suppose that L is semisimple. Then L has no non-zero solvable ideals so,
clearly, rad(L) = { 0 }. Conversely, any solvable ideal is necessarily contained in rad(L).
But rad(L) = { 0 } so this is the only possible solvable ideal.

Part 2: First suppose that L is reductive. Then every solvable ideal of L is contained in
Z(L). In particular, rad(L) ⊆ Z(L). Now Z(L) is an ideal of L that is also an abelian
sub-Lie algebra so Z(L) is itself solvable. Hence Z(L) ⊆ rad(L) and so rad(L) = Z(L).
Conversely, suppose that rad(L) = Z(L). Then every solvable ideal of L is contained in
Z(L) whence L is reductive.

Part 3: If L is simple then it has no non-trivial ideals. Hence the only possible solvable
ideal is { 0 } whence L is semisimple. Furthermore, { 0 } ⊆ Z(L) and so L is reductive.

Part 4: Let I be a solvable ideal of L/rad(L). Let π : L → L/rad(L) be the canonical
surjection. Consider the ideal I = π−1(I). Then rad(L) ⊆ I and I/rad(L) = I whence I is
solvable. But then rad(L) = I whence I = { 0 }.
Part 5 First suppose that L is semisimple. Then the only solvable ideals of L is { 0 }. Since
any abelian ideal would necessarily be solvable, the only possible abelian ideal of L is { 0 }.
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Conversely, assume that L is not semisimple. Then there exists a non-zero solvable ideal
I. In other words, DnI = { 0 } for sufficiently large n. Let N be smallest such N . Then
{ 0 } = DNI = [DN−1I,DN−1I] and so DN−1I is an abelian ideal in L.

Example 6.4. L = sl(n,F) is simple. We shall prove this in the case that n = 2. Recall
that this Lie algebra consists of all traceless matrices in Mat(2,F). This has a basis given
by matrices of the form

H =

(
0 1
0 0

)
, E =

(
0 0
1 0

)
, F =

(
1 0
0 −1

)
These matrices satisfy the relations [H,E] = F , [F,H] = 2H, [F,E] = −2E. Now let I ⊆ L
be a non-zero ideal and let x = αH + βE + γF ∈ I for α, β, γ ∈ C not all zero. First
suppose that both α and β are zero. Then γ is non-zero z = γF ∈ I whence F ∈ I. Now,
[E,F ] = 2E ∈ I and so also E ∈ I. Furthermore, [H,F ] = −2H ∈ I and so H ∈ I. It then
follows that L ⊆ I whence L = I.

Now suppose that c = 0. Then

[H,αH + βE] = α[H,H] + β[H,E] = βF ∈ I =⇒ F ∈ I

It then follows that [H,F ] = −2H ∈ I and so H ∈ I. Similarly, [E,F ] = 2E so E ∈ I.
Hence L ⊆ I whence L = I in this case also. We thus see that the only ideals of L are { 0 }
and L whence L is simple.

Example 6.5. L = gl(n,F) = Mat(n,F) is reductive. Indeed, given any A ∈ L we can
decompose it into the form

A =
1

n
Tr(A)1n +

(
A− 1

n
Tr(A)1n

)
the first term in this decomposition is clearly in Z(L) since it is a multiple of the identity
matrix. The second term is clearly in sl(n,F). Since sl(n,F) is simple, any proper solvable
ideal of L must lie in Z(L) whence L is reductive.

Definition 6.6. Let L be a Lie algebra and ρ : L → End(V ) a representation of L on an
F-vector space. We can define a bilinear form

Bρ : L× L→ F
(X, Y ) 7→ Tr(ρ(X) ◦ ρ(Y ))

Proposition 6.7. Let L be a Lie algebra and ρV a representation of L. Then Bρ is sym-
metrix and invariant:

Bρ([X, Y ], Z) = Bρ(X, [Y, Z])

for all X, Y, Z ∈ L.

Proof. Let X, Y ∈ L. Since the trace is invariant under cyclic permutation, we have

Bρ(X, Y ) = Tr(ρ(X) ◦ ρ(Y )) = Tr(ρ(Y ) ◦ ρ(X)) = Bρ(Y,X)
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Now let Z ∈ L. We have

Bρ([X, Y ], Z) = Tr(ρ([X, Y ]) ◦ ρ(Z))

= Tr([ρ(X), ρ(Y )] ◦ ρ(Z))

= Tr((ρ(X) ◦ ρ(Y )− ρ(Y ) ◦ ρ(X)) ◦ ρ(Z))

= Tr(ρ(X) ◦ ρ(Y ) ◦ ρ(Z))− Tr(ρ(Y ) ◦ ρ(X) ◦ ρ(Z))

= Tr(ρ(X) ◦ ρ(Y ) ◦ ρ(Z))− Tr(ρ(X) ◦ ρ(Z) ◦ ρ(Y ))

= Tr(ρ(X) ◦ ρ(Y ) ◦ ρ(Z)− ρ(X) ◦ ρ(Z) ◦ ρ(Y ))

= Tr(ρ(X) ◦ [ρ(Y ), ρ(Z)])

= Tr(ρ(X) ◦ ρ([Y, Z]))

= Bρ(X, [Y, Z])

Proposition 6.8. Let L be a Lie algebra. Then given X ∈ L, the adjoint action adX(Z) =
[X,Z] is a representation of L on itself.

Proof. We need to show that

ad : L→ End(L)X 7→ adX

is a homomorphism of Lie algebras. It is clearly a linear map by linearity of the Lie bracket.
Note that the Lie bracket in End(L) is given by the commutator of endomorphisms. We
need to show that ad[X,Y ] = [adX , adY ]. For all Z ∈ L, the Jacobi identity implies

ad[X,Y ](Z) = [[X, Y ], Z] = −[Z, [X, Y ]] = [X, [Y, Z]] + [Y, [Z,X]] = [X, [Y, Z]]− [Y, [X,Z]]

= adX ◦ adY (Z)− adY ◦ adX(Z)

as required.

Definition 6.9. Let L be a Lie algebra, X ∈ L and adX : L → End(L) the adjoint
representation of L on itself. We define the Killing form of L to be κL = Bad.

Proposition 6.10. Let (L1, [·, ·]1) and (L2, [·, ·]2 be Lie algebras and ϕ : L1 → L2 an iso-
morphism of Lie algebras. Then

κL2(ϕ(X), ϕ(Y )) = κL1(X, Y )

for all X, Y ∈ L1.

Proof. Let X, Y ∈ L1. We have that

κL2(ϕ(X), ϕ(Y )) = Tr(adϕ(X) ◦ adϕ(Y ))

Now let Z ∈ L1 and let Z ′ = ϕ(Z) . Observe

adϕ(X)(Z
′) = [ϕ(X), Z ′]2 = [ϕ(X), ϕ(Z)]2 = ϕ([X,Z]1) = ϕ ◦ adX(Z) = ϕ ◦ adX ◦ ϕ−1(Z ′)

We thus see that adϕ(X) = ϕ ◦ adX ◦ ϕ−1. It then follows that

κL2(ϕ(X), ϕ(Y )) = Tr(ϕ ◦ adX ◦ ϕ−1 ◦ ϕ ◦ adY ◦ ϕ−1)

= Tr(ϕ ◦ adX ◦ adY ◦ ϕ−1)

= Tr(adX ◦ adY )

= κL1(X, Y )
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Lemma 6.11. Let L be a Lie algebra and κ its Killing form. If I ⊆ L is an ideal then

I⊥ = {X ∈ L | κ(X, Y ) = 0 ∀ y ∈ I }
is an ideal of L.

Proof. Let Y ∈ I⊥. We need to show that [X, Y ] ∈ I⊥ for all X ∈ L. For all Z ∈ I, we have

κ([X, Y ], Z) = −κ([Y,X], Z) = −κ(Y, [X,Z]) = 0

where we have used the invariance of κ and the fact that [X,Z] ∈ I. Thus [X, Y ] ∈ I⊥.

Theorem 6.12 (Cartan’s Criterion). Let L be a Lie algebra and κ its Killing form. Then

1. L is solvable if and only if κ(X, Y ) = 0 for all x ∈ L, Y ∈ [L,L].

2. L is semisimple if and only if κ is non-degenerate.

Proof. Omitted.

Corollary 6.13. Let L be a Lie algebra. Then

1. If L is semisimple and I ⊆ L is an ideal then L = I ⊕ I⊥.

2. L is semisimple if and only if L is a direct sum of simple Lie algebras. Such a direct
summand decomposition is uniquely determined by L.

3. If L is semisimple then L = [L,L].

4. If L =
⊕

i Li is semisimple then any ideal of L is a direct sum of some of the Li.

5. If L is semisimple then any ideal, quotient and homomorphic image of L is also
semisimple.

Proof.

Part 1: Let J = I ∩ I⊥. Then κL|J = 0 by the definition of I⊥. It then follows that J is
solvable by Cartan’s Criterion. Since L is semisimple, rad(L) = { 0 } and so I ∩ I⊥ = J =
{ 0 }. Furthermore, dim I⊥ = dimL− dim I so L = I ⊕ I⊥.

Part 2: First suppose that L is semisimple. Then we may apply Part 1 repeatedly until
each direct summand has no non-trivial ideals. Conversely, suppose that L admits a direct
summand decomposition L =

⊕
i Li into simple Lie algebras. Then the Killing form of L is

given by the sum of the Killing forms of the Li. Since any simple Lie algebra is semisimple,
the Killing form of each Li is non-degenerate whence the Killing form of L is non-degenerate.
Applying Cartan’s Criterion again, we see that L is semisimple.

Part 3: Since L is the direct sum of simple Lie algebras Li and each Li satisfies Li = [Li, Li],
the same must be true of L by linearity of the Lie bracket.

Part 4: We shall prove this by induction on the number of direct summands in the decom-
position of L into simple Lie algebras. Suppose L admits the decomposition L =

⊕k
i=1 Li.

First suppose that k = 1. Then L is simple and its only ideals are { 0 } and L which both
appear in the direct sum decomposition of L (trivially). Now suppose the statement holds
true for k − 1. Let πk : L → Lk be the projection of L onto its kth direct summand. Then
πk(I) ⊆ Lk is an ideal. Since Lk is simple, either πK(I) = { 0 } or πK(I) = Lk. In the
former case, it follows that I ⊆ L1 ⊕ · · · ⊕ Lk−1. Applying the induction hypothesis, we
see that I is equal to a direct sum of some of these summands. In the second case we have
that [Lk, I] = [Lk, πk(I)] = [Lk, Lk] = Lk. Since I is an ideal, it follows that Lk ⊆ I. Hence
I = Lk ⊕ I ′ for some I ′ ∈ L1 ⊕ · · · ⊕ Lk−1. The claim then follows by again invoking the
induction hypothesis.
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7 Complexification and Real Forms

Definition 7.1. Let V be an R-vector space. We define the complexification of V ,
denoted VC to be the C-vector space given by VC = V × V with compontent wise addition
and scalar multiplication

(a+ ib)(v1, v2) = (av1 − bv2, bv1 + av2)

for a, b ∈ R. We shall use the notation (v1, v2) = v1 + iv2.

Remark. If g is an R-Lie algebra then gC is a complex Lie algebra. Indeed, all we have to
do is extend [·, ·] to be C-bilinear:

[v1 + iv2, w1 + iw2] = [v1, w1]− [v2, w2] + i[v1, w2] + i[v2, w1]

Furthermore, if ϕ : g → W is a linear map where W is a complex vecctor space then ϕ
induces a mapping

ϕ : gC → W

by setting ϕ(v1 + iv2) = ϕ(v1) + iϕ(v2). In particular, a complex representation of g extends
to a complex representation of gC. This then implies that the bilinear form Bρ (and thus
the Killing form) extend to gC.

Definition 7.2. Let g be a real Lie algebra and gC its complexification. Then g is called a
real form of gC.

Theorem 7.3. Let g be a Lie algebra. Then g is solvable (nilpotent, semisimple) if and
only if gC is solvable (nilpotent, semisimple).

Proof. Solvability and nilpotency concern vanishing of nested and repeated commutators.
This happens over R if and only if it happens over C. For semisimplicity, note that κg
is non-degenerate if and only if κgC is non-degenerate. We may thus appeal to Cartan’s
criterion to see that gC is semisimple if and only if g is semisimple

Example 7.4. Let g = Lie(U(n)) = {X ∈ Mat(n,C) | X = −X† }. Then gC = gl(n,C).
Indeed, if A ∈ gC then we can write

A =
1

2
(A+ A†) +

1

2
(A− A†)

The second term on the right hand side is clearly an element of Lie(U(n)) whereas the first
term is an element of iLie(U(n)).

8 Representation Theory of Lie Algebras

Definition 8.1. Let g be a Lie algebra and ρV a representation of g. We say that ρV is
faithful if ker ρ = { 0 }.

Definition 8.2. Let g be a Lie algebra and ρV1 , ρV2 representations of g. A linear map
f : V1 → V2 is said to be an intertwiner between ρV1 and ρV2 if

ρV2(X) ◦ f = f ◦ ρV1(X)

for all X ∈ g.
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Definition 8.3. Let g be a Lie algebra and ρV1 , ρV2 representations of g. We say that ρV1
and ρV2 are equivalent if there exists an invertible intertwiner between them.

Example 8.4. Let g be a Lie algebra. Then we have the trivial representation ρ : g →
End(C) defined by ρ(x) = 0 for allx ∈ g.

Example 8.5. Let g ⊆ Mat(n,F) be a Lie algebra. Then we have the fundamental given
by

ρ : g→ End(Fn)

g 7→ g

Definition 8.6. Let g be a Lie algebra and ρV1 ,ρV2 be representations of g. We define the
direct sum representation, denoted ρV1 ⊕ ρV2 be the representation of g on V1 ⊕ V2 given
by ρ(x)(v1, v2) = (ρV1(x)v1, ρV2(x)v2).

Lemma 8.7. Let g be a Lie algebra and ρV1 , ρV2 representations of g. If f : V1 → V2 is an
intertwiner between ρV1 and ρV2 then ker f and im f are invariant subspaces of V1 and V2

respectively.

Proof. Let x ∈ g. v1 ∈ ker f if and only if f(v1) = 0. Then ρV1(x)v1 ∈ ker f . Indeed, we
have

f(ρV1(x)v1) = ρV2(x)f(v1) = 0

Furthermore, v2 ∈ im f if and only if there exists v1 ∈ V1 such that f(v1) = v2. Then

ρV2(x)v2 = ρV2(x)f(v1) = f(ρV1(x)v1) ∈ im f

Hence they are both invariant subspaces of their respective ambient spaces.

Theorem 8.8 (Schur’s Lemma). Let g be a Lie algebra.

1. If ρV1 , ρV2 are irreducible representations of g and f : V1 → V2 is an intertwiner between
them then either f ≡ 0 or f is an isomorphism.

2. If ρV is an irreducible representation of g on a C-vector space V and f : V → V is a
self-intertwiner of ρ1 then f = λ1V for some λ ∈ C.

3. If ρV1 , ρV2 are complex representations of g and f : V1 → V2, f : V1 → V2 are non-zero
intertwiners between them then f = λf for some λ ∈ C.

Proof.

Part 1: By Lemma 8.7, ker f is an invariant subspace of V1. Since ρV1 is irreducible, we
must either have that ker f = { 0 } or ker f = V1. In the first case, ker f is trivial whence
f is injective. In the latter case, f ≡ 0. Furthermore, im f is an invariant subspace of V2.
Since ρV2 is irreducible, either im f = { 0 } or im f = V2. In the first case, f ≡ 0 and in the
second case, f is surjective. We thus have that either f ≡ 0 or f is surjective and injective
whence it is an isomorphism.

Part 2: Since f : V1 → V1 is a linear map of C-vector spaces, it has at least one eigenvector
vλ ∈ V1 with eigenvalue λ ∈ C. By definition, we have that f ◦ ρV = ρV ◦ f . Since 1V
commutes with any linear map, we have that

(f − λ1V ) ◦ ρV = ρV ◦ (f − λ1V )
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and so f − λ1V is also a self-intertwiner of ρV . Since ρV is irreducible, Part 1 implies that
f − λ1V is either the zero map or an isomorphism. But f − λ1V cannot be an isomorphism
since (f − λ1V )vλ = 0. Hence f − λ1V ≡ 0 and so f = λ1V .

Part 3: If f and f are two non-zero intertwiners between ρV1 and ρV2 then f and f are
necessarily isomorphisms. This implies that f−1 exists. We claim that f−1 ◦ f is a self-
intertwiner of ρV1 . To this end, let x ∈ g. Note that f−1 is an intertwiner between ρV2 and
ρV1 . Then

ρV1(x) ◦ f−1 ◦ f = f−1 ◦ ρV2(x) ◦ f = f−1 ◦ f ◦ ρV1

and so f−1 ◦ f is a self-intertwiner of ρV1 . Part 2 then implies that f−1 ◦ f = 1V whence
f = λf for some λ ∈ C.

9 Representations of sl(2,C)
In this section, we aim to classify all finite-dimensional complex irreducible representations
of g = sl(2,C). Recall that

sl(2,C) = {A ∈ Mat(2,C) | TrA = 0 }

and has a R-basis given by

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
These matrices satisfy the relations [H,E] = 2E, [H,F ] = −2F , [E,F ] = H. Let ρV : g→
End(V ) be a representation of g. Given x ∈ g and v ∈ V , we shall write ρV (X)v = X · v for
short. Note that since V is a complex vector space, ρV (H) necessarily has an eigenvector,
say v 6= 0 ∈ V with corresponding eigenvalue λ: H · v = λv.

Proposition 9.1. With notation as above, E and F are raising and lowering operators
respectively. In other words, Em ·v = 0 or Em ·v is an eigenvector for ρV (H) with eigenvalue
λ+ 2m. Similarly, Fm · v = 0 or Fm · v is an eigenvector for ρV (H) with eigenvalue λ−2m.

Proof. We first show that E is a raising operator. We shall prove this by induction on m.
First suppose that m = 1. We have that

H · E · v = [H,E] · v + E ·H · v = 2E · v + E · (λv) = 2E · v + λ(E · v) = (λ+ 2)E · v

Now suppose that the claim holds for m− 1. By the induction hypothesis, we have

H · Em · v = H · E · Em−1v = ([H,E] + E ·H) · Em−1v

= [H,E] · Em−1v + E ·H · Em−1v

= 2E · Em−1v + E · (λ+ 2(m− 1))Em−1v

= 2Emv + (λ+ 2(m− 1))Emv

= (λ+ 2m)Emv

The exact same argument follows through to show that F is a lowering operator.

Proposition 9.2. With notation as above, ρ(H) can only have integer eigenvalues.
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Proof. Note that since eigenvectors for different eigenvalues must be linearly independent
and V is finite-dimensional, we must have that Emv = 0 for large enough m and F kv = 0 for
large enough k. Let m be the smallest natural number such that Emv = 0 but Em−1v = v0 6=
0. Consider the sequence of vectors v0, v1 = Fv0, . . . , vl = F lv0, . . . and also set v−1 = 0.
Let λ0 be such that H · v0 = λ0v0. We first claim that H · vl = (λ0 − 2l)vl. We prove this
by induction on l. First suppose that l = 0. Then, by definition, H · v0 = λ0v0 and this
satisfies the claim. Now suppose the claim holds true for l − 1. We have

H · vl = H · F l · v0 = H · F · F l−1 · v0 = ([H,F ] + F ·H) · F l−1v0

= [H,F ] · F l−1 · v0 + F ·H · F l−1v0

= −2F · F l−1 · v0 + F · (λ0 − 2(l − 1))F l−1v0

= (λ0 − 2l)F lv0

= (λ0 − 2l)vl

as required. We next claim that E · vl = l(λ0 − l + 1)vl−1. We shall again prove this by
induction on l. First suppose that l = 0. Then E · v0 = Emv0 = 0 and so the claim holds.
Now suppose it holds for l − 1. We have that

E · vl = E · F lv0 = E · F · vk−1 = ([E,F ] + F · E) · vl−1

= [E,F ] · vl−1 + F · E · vl−1

= H · vl−1 + F · (l − 1)(λ0 − l + 2)vl−1

= (λ0 − 2l + 2)vl−1 + (l − 1)(λ0 − l + 2)vl−1

= (λ0 − 2l + 2 + lλ0 − λ0 − l2 + l + 2l − 2)vl−1

= (lλ0 − l2 + l)vl−1

= l(λ0 − l + 1)vl−1

as required. Since V is finite-dimensional and vl are all eigenvectors of H with distinct
eigenvalues, vk = 0 for large enough k. Assume that vk−1 = 0. Then

E · vk = k(λ0 − k + 1)vk−1

Observe that, since vk−1 6= 0 then E · vk 6= 0 if λ0 6∈ Z. But then this would imply that
vk 6= 0 which is a contradiction. Hence we must have that λ0 = 0.

Proposition 9.3. Let g = sl(2,C). For each n = 1, 2, . . . , we have a representation of g
on Vn = Cn given by

ρn(H)em = (n− 1− 2m)em

ρn(E)em = m(n−m)em−1

ρn(F )em = em+1

where e0, . . . , en−1 are the standard basis vecotrs of Cn and we have set e−1 = 0 and en = 0.

Proof. We must first check that ρ : g → End(V ) is a homomorphism of Lie algebras. We
have that

ρn([H,E])em = ρn(2E)em = 2m(n−m)em−1

[ρn(H), ρn(E)]em = ρn(H)ρn(E)em − ρn(E)ρn(H)em

= m(n−m)ρn(H)em−1 − (n− 1− 2m)ρn(E)em

= m(n−m)(n+ 1− 2m)em−1 −m(n− 1− 2m)(n−m)em−1

= m(n−m)(n+ 1− 2m− n+ 1 + 2m)em−1

= 2m(n−m)em−1
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and so ρn([H,E]) = [ρn(H), ρn(E)]. We can similarly check for the other commutation
relations to see that ρn is a homomorphism of Lie algebras.

We now show that ρn is an irreducible representation of g. Let W ⊆ Vn be a non-zero
invariant subspace. Then ρn(H)|W has an eigenvector 0 6= v ∈ W . But then v is also an
eigenvector of ρn(H) since the em are a basis of Vn consisting of ρn(H)-eigenvectors with
distinct eigenvalues, v = em for some 0 ≤ m ≤ n − 1. Since W is invariant, it contains
v = em, E

l ·em, F k ·em for all l, k and so it contains the whole basis. We must therefore have
that W = Vn.

Proposition 9.4. With notation as above, any finite-dimensional irreducible representation
V of sl(2,C) is equivalent to one of the Vn.

Proof. We know that V contains 0 6= v0 such that Ev0 = 0, H · v0 = λ0v0 for some λ0 ∈ Z
and that the sequence v0, v1 = F · v0, . . . , vk = F k · v0 must terminate. The v0, v1, . . . , vk
span an invariant subspace of V and are all linearly independent. Hence they must be a
basis for V . We can then define a linear map

ϕ : V → CdimV ∼= VdimV

vl 7→ el

This is an injective intertwiner so Schur’s Lemma implies that ϕ is an isomorphism.

10 Cartan Subalgebras and Root Space Decomposi-

tion

Definition 10.1. Let g be a finite-dimensional semisimple complex Lie algebra. A sub-Lie
algebra h ⊆ g is a Cartan subalgebra of g if

1. H ∈ h implies that adH is diagonalisable.

2. h = C(h) = {x ∈ g | [x,H] = 0 ∀H ∈ h }. In other words, h is equal to its own
centraliser.

Remark. Let g be a finite-dimensional semisimple complex Lie algebra and h ⊆ g a Cartan
subalgebra. Clearly, the second condition implies that h is abelian. This then implies that
adH are all simultaneously diagonalisable.

Theorem 10.2. Let g be a finite-dimensional semisimple complex Lie algebra. Then g has a
non-trivial Cartan subalgebra h and such a Cartan subalgebra is unique up to isomorphism.

Proof. Omitted.

Definition 10.3. Let g be a finite-dimensional semisimple Lie algebra and h ⊆ g a Cartan
subalgebra. Since adH are simultaneously diagonalisable for all H ∈ h, they have a common
eigenvector, say x ∈ g. Then there exists α ∈ h∗ such that

adH(x) = α(H)x

for all H ∈ h. We say that α is a root of g if α 6= 0 and

gα = {x ∈ g | [H, x] = α(H)x ∀H ∈ h }

is not { 0 }. In this case, we refer to gα as a root space. The collection of all roots of g is
referred to as a root system of g and is denoted Φ(g, h).
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Remark. We may decompose g into simultaneous eigenspaces of elements of h to get the
root space decomposition of g:

g = g0 ⊕
⊕
α∈Φ

gα

Example 10.4. Consider g = sl(n,C) = {A ∈ Mat(n,C) | TrA = 0 }. We first claim that

h =

{
A = diag(x11, . . . , xnn)

∣∣∣∣∣
n∑
i=1

xii = 0, xii ∈ C

}
is a Cartan subalgebra of g. Consider the basis of matrix units (Eij)mn = δmiδnj. Then
given H ∈ h we have

[H,Eij] = HEij − EijH = xiiEij − xjjEij = (xii − xjj)Eij
and so adH is diagonal with respect to this basis. h is clearly abelian so it suffices to show
that C(h) ⊆ h. Note that a basis for g is given by the union of basis elements for h and the
matrix units Eij. Recall that

C(h) = {A ∈ g | [H, x] = 0 ∀H ∈ h }

Since [H,Eij] = (xii − xjj)Eij, we can always find a diagonal matrix H ∈ h such that
[H,Eij] = 0 for i 6= j. Hence the matrix units Eij 6∈ C(h). Thus the only possible basis
elements in C(h) are the ones of h whence C(h) ⊆ h. Hence h is a Cartan subalgebra of g.

Now define ei ∈ h∗ by ei(H) = xii. Then adH(Eij) = (ei− ej)(H)Eij and so the roots of
g are

Φ = { ei − ej | i 6= j }

We can thus find the root spaces:

gei−ej = {x ∈ g | [H, x] = (ei − ej)(H)x ∀H ∈ h } = CEij
Proposition 10.5. Let g be a finite-dimensional semisimple complex Lie algebra and h ⊆ g
a Cartan subalgebra so that

g = h⊕
⊕
α∈Φ

gα

Then

1. [gα, gβ] ⊆ gα+β.

2. If x ∈ gα, y ∈ gβ then κ(x, y) = 0 unless α + β = 0 for all α, β ∈ { 0 } ∪ Φ.

3. h∗ = spanC(Φ).

Proof.

Part 1: Let x ∈ gα, y ∈ gβ. Then for all H ∈ h we have

[H, [x, y]] = −[y, [H, x]]− [x, [y,H]]

= −[y, [H, x]] + [x, [H, y]]

= −[y, α(H)x] + [x, β(H)y]

= −α(H)[y, x] + β(H)[x, y]

= α(H)[x, y] + β(H)[x, y]

= (α(H) + β(H))[x, y]
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and so [x, y] ∈ gα+β whence [gα, gβ] ⊆ gα+β.

Part 2: First suppose that α+β 6= 0. Then there exists H ∈ h such that α(H)+β(H) 6= 0.
Then

(α(H) + β(H))κ(x, y) = κ(α(H)x, y) + κ(x, β(H), y) = κ([H, x], y) + κ(x, [H, y])

= −κ([x,H], y) + κ(x, [H, y])

= −κ(x, [H, y]) + κ(x, [H, y]) = 0

where we have used Part 1 and the fact that κ is non-degenerate. Now suppose that α+β = 0.
We want to show that κ(x, y) 6= 0 for x ∈ gα, y ∈ gβ. But this is equivalent to showing that
κ restricted to g0 = h is non-degenerate. Let y ∈ h. Since g is semisimple, Cartan’s criterion
implies that κ is non-degenerate. Then there exists x ∈ g such that κ(x, y) 6= 0. Now write

x = x0 +
∑
α∈Φ

xα

for some x0 ∈ h and xα ∈ gα. By Part 2, κ(x, y) = κ(x0, y). Hence for all y ∈ h, we can find
an x0 ∈ h such that κ(x0, y) 6= 0.

Part 3: Assume spanC(Φ) ( h∗. We first claim that there exists non-zero H ∈ h such that
α(H) = 0 for all α ∈ Φ. Indeed let { vi } be a basis for h. Then there exists a canonical dual
basis for h∗, say { v∗i } such that v∗i (vj) = δij. Since spanC(Φ) is a proper subspace of h∗, it
must lack at least one of these canonical dual basis elements, say v∗i . Then, clearly, vi is a
non-zero element of h such that α(vi) = 0 for all α ∈ H. It then follows that vi commutes
with all of

⊕
α∈Φ gα as well as h and so vi commutes with all of g. Hence vi ∈ Z(g). But

g is semisimple and so Z(g) = { 0 } whence vi = 0. But this is a contradiction since vi is a
basis element of h. We must therefore have that spanC(Φ) = h∗.

28


