Lie Groups and Lie Algebras

Alexandre Daoud
King's College London
alex.daoud@mac.com

June 20, 2016

1 Matrix Lie Groups

Throughout this section, we shall let $\mathbb{F}=\mathbb{R}$ or \mathbb{C}.
Definition 1.1. Let K be a field. We define the general linear group of degree \mathbf{n} over K, denoted GL (n, K) to be the group of all $n \times n$ invertible matrices with group operation given by matrix multiplication.

Remark. GL (n, K) is an $n \times n$ dimensional vector space over K. Given a norm on $\|\cdot\|$ on K, we can define a norm on $\operatorname{GL}(n, K)$, say $\|\cdot\|_{M}$ as follows:

$$
\|A\|_{M}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left\|A_{i j}\right\|
$$

Recall that all norms on finite dimensional vector spaces over locally compact fields (such as \mathbb{F}) are equivalent. Hence over a locally compact field K, all norms on $\operatorname{GL}(n, K)$ are equivalent.

Definition 1.2. We define a matrix Lie group to be a topologically closed subgroup of $\operatorname{GL}(n, \mathbb{F})$ for some $n \geq 1$.

Example 1.3. GL (n, \mathbb{F}) is a matrix Lie group since the whole group is closed in itself.
Example 1.4. Let $\operatorname{SL}(n, \mathbb{F})=\{A \in \mathrm{GL}(n, \mathbb{F}) \mid \operatorname{det} A=1\}$. Then $\operatorname{SL}(n, \mathbb{F})$ is a matrix Lie group. Indeed, the function

$$
\begin{aligned}
\operatorname{det}: \mathrm{GL}(n, \mathbb{F}) & \rightarrow \mathbb{F} \\
A & \mapsto \operatorname{det} A
\end{aligned}
$$

is continuous. Then $\mathrm{SL}(n, \mathbb{F})=\operatorname{det}^{-1}(\{1\})$. Recall that the inverse image of a closed set under a continuous map is closed and so $\operatorname{SL}(n, \mathbb{F})$ is closed.

Example 1.5. Let $\mathrm{O}(n, \mathbb{F})=\left\{A \in \mathrm{GL}(n, \mathbb{F}) \mid A^{t} A=\mathbb{1}_{n}\right\}$. Then $\mathrm{O}(n, \mathbb{F})$ is a matrix Lie group. Indeed, the function

$$
\begin{aligned}
\phi: \mathrm{GL}(n, \mathbb{F}) & \rightarrow \mathrm{GL}(n, \mathbb{F}) \\
A & \mapsto A^{t} A
\end{aligned}
$$

is continuous. Then $\mathrm{O}(n, \mathbb{F})=\phi^{-1}\left(\left\{\mathbb{1}_{n}\right\}\right)$. $\left\{\mathbb{1}_{n}\right\}$ is clearly closed whence $\mathrm{O}(n, \mathbb{F})$ is closed.

Example 1.6. Let $\mathrm{SO}(n, \mathbb{F})=\left\{A \in \mathrm{GL}(n, \mathbb{F}) \mid A^{t} A=\mathbb{1}_{n}\right.$, $\left.\operatorname{det} A=1\right\}$. Then $\mathrm{SO}(n, \mathbb{F})$ is a matrix Lie group. Indeed, $\mathrm{SO}(n, \mathbb{F})=\operatorname{det}^{-1}(\{1\}) \cap \phi^{-1}\left(\left\{\mathbb{1}_{n}\right\}\right)$. This is the intersection of two closed sets so it is again a closed set.

Example 1.7. The same argumentation as the previous examples applies to the groups $\mathrm{U}(n, \mathbb{F})=\left\{A \in \mathrm{GL}(n, \mathbb{F}) \mid A^{\dagger} A=\mathbb{1}\right\}$ and $\mathrm{SU}(n, \mathbb{F})=\left\{A \in \mathrm{GL}(n, \mathbb{F}) \mid A^{\dagger} A=\mathbb{1}, \operatorname{det} A=1\right\}$.

Definition 1.8. Let G_{1} and G_{2} be matrix Lie groups over \mathbb{F}. A Lie group homomorphism $\varphi: G_{1} \rightarrow G_{2}$ is a continuous group homomorphism from G_{1} to G_{2}.

Definition 1.9. Let K be a field and $(V,\|\cdot\|)$ a normed K-vector space. We say that a subset $W \subseteq V$ is compact if W is closed and bounded with respect to $\|\cdot\|$.

Example 1.10. $\mathrm{O}(n, \mathbb{F}), \mathrm{SO}(n, \mathbb{F}), \mathrm{U}(n, \mathbb{F}), \mathrm{SU}(n, \mathbb{F})$ are all compact. Indeed, consider the case of $\mathrm{O}(n, \mathbb{F})$. Let $A \in \mathrm{O}(n, \mathbb{F})$. Then $A^{t} A=\mathbb{1}_{n}$ means that

$$
\sum_{k=1}^{n} a_{i k}^{2}=1
$$

for all $1 \leq i \leq n$. Hence $\left\|a_{i k}\right\| \leq 1$ for all $1 \leq i \leq k \leq n$. It then follows that $\|A\| \leq n^{2}$ whence A is bounded. Since $\mathrm{O}(n, \mathbb{F})$ was shown to be closed, we see that $\mathrm{O}(n, \mathbb{F})$ is compact. The same argumentation holds for the other cases.
$\operatorname{SL}(n, \mathbb{F})$ (for $n \geq 2$) and $\operatorname{GL}(n, \mathbb{F})$ are not compact since they contain matrices whose norms grow arbitrarly large. For example, in the $\operatorname{SL}(n, \mathbb{F})$ case, let $\lambda \neq 0$ and consider the diagonal matrix whose entries are all 1s except for a λ and λ^{-1}. Then this matrix is clearly in $\operatorname{SL}(n, \mathbb{F})$ and its norm grows arbitrarily large as $\lambda \rightarrow \infty$.

Definition 1.11. Let G be a matrix Lie group. We say that G is path-connected if for all $A, A^{\prime} \in G$, there exists a continuous mapping called a path $p:[0,1] \rightarrow G$ such that $p(0)=A^{\prime}$ and $p(1)=A$.

Proposition 1.12. $\mathrm{U}(n, \mathbb{F})$ is path-connected.
Proof. By elementary linear algebra, every matrix $V \in \mathrm{U}(n, \mathbb{F})$ is unitarily diagonalisable. Hence there exists a unitary matrix $\bar{V} \in \mathrm{U}(n, \mathbb{F})$ and $\theta_{j} \in \mathbb{R}$ such that

$$
V=\bar{V} \operatorname{diag}\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right) \bar{V}^{-1}
$$

Now define

$$
V(t)=\bar{V} \operatorname{diag}\left(e^{i \theta_{1}(1-t)}, \ldots, e^{i \theta_{n}(1-t)}\right) \bar{V}^{-1}
$$

then $V(t)$ is a continuous function satisfying $V(0)=V$ and $V(1)=\mathbb{1}_{n}$. We see that any unitary matrix is path-connected to the identity element whence $\mathrm{U}(n, \mathbb{F})$ is path-connected.

Proposition 1.13. $\mathrm{O}(n, \mathbb{F})$ is not path-connected.
Proof. Let $A, A^{\prime} \in \mathrm{O}(n, \mathbb{F})$. Then $\operatorname{det} A$ and $\operatorname{det} A^{\prime}$ are ± 1. Recall that det is a continuous function on $\mathrm{O}(n, \mathbb{F})$. By elementary topology, the continuous image of a pathconnected space is path-connected. Hence if $\mathrm{O}(n, \mathbb{F})$ were to be path connected, so would $\operatorname{det}(\mathrm{O}(n, \mathbb{F}))=\{-1,1\}$. This is clearly not path-connected so $\mathrm{O}(n, \mathbb{F})$ cannot be pathconnected.

Proposition 1.14. Let G be a matrix Lie group. The connected component of the identity (in other words, all elements of G that are path-connected to $\mathbb{1}_{n}$) is a subgroup of G.

Proof. Let $A, B \in G$ and suppose that $A(t)$ and $B(t)$ are paths in G from $\mathbb{1}_{n}$ to A and B respectively. Then $A(t) B(t)$ is a path from $\mathbb{1}_{n}$ to $A B$ and $A(t)^{-1}$ is a path from $\mathbb{1}_{n}$ to A^{-1}. Hence if A and B are in the connected component of $\mathbb{1}_{n}$, so is $A B$ and A^{-1} whence the connected component of $\mathbb{1}_{n}$ is a subgroup of G.

Example 1.15. $\mathrm{SO}(n, \mathbb{F})$ is the connected component of the identity in $\mathrm{O}(n, \mathbb{F})$.
Definition 1.16. Let G be a matrix Lie group. We say that G is simply connected if every closed path can be deformed continuously to a constant path.

Example 1.17. We have $\mathrm{SU}(2, \mathbb{F}) \cong S^{3}$ and is thus simply-connected since loops on spheres can be continuously shrunk to points.

2 Matrix Exponential

Proposition 2.1. Let $A \in \operatorname{Mat}(n, \mathbb{F})$. Then

$$
\exp A=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}
$$

is absolutely convergent and satisfies

1. $\exp (0)=\mathbb{1}_{n}$
2. If $A B=B A$ then $\exp (A+B)=\exp (A) \exp (B)$
3. $\exp (A)^{-1}=\exp (-A)$
4. If C is invertible then $C \exp (A) C^{-1}=\exp \left(C A C^{-1}\right)$

Proof. We have that

$$
\|\exp (A)\| \leq \sum_{n=0}^{\infty} \frac{1}{n!}(\|A\|)<\infty
$$

so $\exp (A)$ converges absolutely.
Part 1: This is clear upon inserting the zero matrix into the definition of the matrix
exponential.
Part 2: Let $A, B \in \operatorname{Mat}(n, \mathbb{F})$ be such that $A B=B A$. Then by the Binomial Theorem, we have

$$
\begin{aligned}
\exp (A+B) & =\sum_{n=0}^{\infty} \frac{1}{n!}(A+B)^{n} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n}\binom{n}{k} A^{k} B^{n-k} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!} A^{k} \frac{1}{(n-k)!} B^{n-k} \\
& =\sum_{n=0}^{\infty} \sum_{n=m+k} \frac{1}{k!} A^{k} \frac{1}{m!} B^{m} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{n!} A^{n} \frac{1}{m!} B^{m} \\
& =\left(\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}\right)\left(\sum_{m=0}^{\infty} \frac{1}{m!} B^{m}\right) \\
& =\exp (A) \exp (B)
\end{aligned}
$$

Part 3: Let $A \in \operatorname{Mat}(n, \mathbb{F})$. Clearly, A commutes with $-A$ so by Part 2, we have $\exp (A) \exp (-A)=\exp (A-A)=\mathbb{1}_{n}$. Hence, $\exp (A)^{-1}=\exp (-A)$.
Part 4: This follows immediately upon left-multiplying and right-multiplying $\exp (A)$ by C and C^{-1} respectively.

Proposition 2.2. Let $A \in \operatorname{Mat}(n, \mathbb{C})$. Then

$$
\operatorname{det} e^{A}=e^{\operatorname{Tr} A}
$$

Proof. Since \mathbb{C} is algebraically closed, A is diagonalisable so we can write $A=P D P^{-1}$ for some diagonal matrix $D \in \operatorname{Mat}(n, \mathbb{C})$ with diagonal elements $\lambda_{1}, \ldots, \lambda_{n}$ and some invertible $P \in \operatorname{Mat}(n, \mathbb{C})$. Then $e^{A}=P e^{D} P^{-1}$

$$
\operatorname{det}\left(e^{A}\right)=\operatorname{det}(P) \operatorname{det}\left(e^{D}\right) \operatorname{det}\left(P^{-1}\right)=\operatorname{det}\left(e^{D}\right)=e^{\lambda_{1}} \cdots e^{\lambda_{n}}=e^{\lambda_{1}+\cdots+\lambda_{n}}=e^{\operatorname{Tr} D}=e^{\operatorname{Tr} A}
$$

Now, the diagonal matrices are dense in $\operatorname{Mat}(n, \mathbb{C})$ and det and e^{X} are continuous functions so the equality must hold for all of $\operatorname{Mat}(n, \mathbb{C})$ by continuity.

Proposition 2.3. Let $A \in \operatorname{Mat}(n, \mathbb{F})$. Then the map $t \mapsto \exp (t A)$ is a smooth curve through $\mathbb{1}_{n}$ in $\operatorname{Mat}(n, \mathbb{F})$ and

$$
\frac{d}{d t} e^{t A}=A e^{t A}=e^{t A} A
$$

In particular,

$$
\left.\frac{d}{d t} e^{t A}\right|_{t=0}=A
$$

Proof. Since $\exp (A)$ is absolutely convergent, differentiation with respect to a parameter is possible. The proof then follows as in the case of real numbers.

Proposition 2.4. Let $A \in \operatorname{Mat}(n, \mathbb{C})$ be such that $\left\|A-\mathbb{1}_{n}\right\|<1$. Then

$$
\log (A)=-\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m}\left(A-\mathbb{1}_{n}\right)^{m}
$$

is absolutely convergent and

1. $\exp (\log (A))=A$
2. $\log (\exp (B))=B$ if $\|B\| \leq \log 2$

Proof. The series only exists when $\left\|A-\mathbb{1}_{n}\right\|<1$. The two properties follow in the same way as for the real numbers (infact, they hold in any formal power series ring over a field such as \mathbb{R}). The $\log 2$ condition is necessary to ensure that $\exp (B)$ is in the radius of convergence of \log.

Proposition 2.5 (Trotter Product Formulae). Let $A, B \in \operatorname{Mat}(n, \mathbb{F})$. Then we have the following two formulas:

$$
\begin{aligned}
& \exp (A+B)=\lim _{n \rightarrow \infty}\left[\exp \left(\frac{A}{n}\right) \exp \left(\frac{B}{n}\right)\right]^{n} \\
& \exp ([A, B])=\lim _{n \rightarrow \infty}\left[\exp \left(\frac{A}{n}\right) \exp \left(\frac{B}{n}\right) \exp \left(\frac{-A}{n}\right) \exp \left(\frac{-B}{n}\right)\right]^{n^{2}}
\end{aligned}
$$

where $[A, B]$ is the commutator $A B-B A$.
Proof. Omitted.
Theorem 2.6 (Baker-Campbell-Hausdorff Formula). Let $X, Y \in \operatorname{Mat}(n, \mathbb{C})$ such that $\|X\|+$ $\|Y\|<\log 2$. Then $\exp (X) \exp (Y)=\exp (Z)$ where

$$
Z=\sum_{n>0} \frac{(-1)^{n-1}}{n} \sum_{\substack{r_{i}+s_{i}>0 \\ 1 \leq i \leq n}} \frac{X^{r_{1}} Y^{s_{1}} \ldots X^{r_{n}} Y^{s_{n}}}{r_{1}!s_{1}!\cdots r_{n}!s_{n}!}
$$

where $X^{r_{n}} Y^{s_{n}} \ldots X^{r_{n}} Y^{s_{n}}=[\underbrace{[X,[X, \ldots,[X}_{r_{1}}, \underbrace{[Y,[Y, \ldots[Y}_{s_{1}}, \underbrace{\ldots[X,[X, \ldots[X}_{r_{n}}, \underbrace{[Y,[Y, \ldots Y]]}_{s_{n}} \ldots]]$
Proof. Omitted.
Remark. The first few terms of the BCH Formula are

$$
Z=X+Y+\frac{1}{2}[X, Y]+\frac{1}{12}[X,[X, Y]]+\frac{1}{12}[Y,[Y, X]]+\ldots
$$

3 Lie Algebras of Matrix Lie Groups

Throughout this section, $\mathbb{F}=\mathbb{R}$ or \mathbb{C}.

Definition 3.1. Let \mathbb{F} be a field. A Lie algebra is an \mathbb{F}-vector space L equipped with a bilinear map $[\cdot, \cdot]: L \times L \rightarrow L$ called the Lie bracket satisfying $[X, Y]=-[Y, X]$ for all $X, Y \in L$ and the Jacobi identity

$$
[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0
$$

for all $X, Y, Z \in L$.
Proposition 3.2. Let G be a matrix Lie group over \mathbb{F}. Then

$$
\operatorname{Lie}(G)=\{X \in \operatorname{Mat}(n, \mathbb{F}) \mid \exp (t X) \in G \forall t \in \mathbb{R}\}
$$

is a Lie algebra over \mathbb{R}. We shall call this the Lie algebra of G.
Proof. Let $\mathfrak{g}=\operatorname{Lie}(G)$. We first show that \mathfrak{g} is a \mathbb{R}-vector space. Let $X \in \mathfrak{g}$ and $s \in \mathbb{R}$. Then

$$
X \in \mathfrak{g} \Longrightarrow e^{s t X} \in G \forall t \in \mathbb{R} \Longrightarrow e^{t(s X)} \in G \forall t \in \mathbb{R} \Longrightarrow s X \in \mathfrak{g}
$$

Now let $X, Y \in \mathfrak{g}$. Then by the Trotter Product Formula, we have

$$
e^{t(X+Y)}=\lim _{n \rightarrow \infty}\left[\exp \left(\frac{t X}{n}\right) \exp \left(\frac{t Y}{n}\right)\right]^{n}
$$

Now, $\exp (t X / n), \exp (t Y / n) \in G$ for all n and hence so is their product. Since G is closed, the above limit is in G and so $\exp (t(X+Y)) \in G$ for all $t \in \mathbb{R}$ whence $X+Y \in \mathfrak{g}$.

We now show that \mathfrak{g} possesses a Lie bracket. We claim that the matrix commutator $[A, B]=A B-B A$ is such a commutator. It is clearly \mathbb{R}-linear, anti-symmetric and satisfies the Jacobi identity. It suffices to show that if $X, Y \in \mathfrak{g}$ then $[X, Y] \in \mathfrak{g}$. We have that

$$
\exp (t[A, B])=\exp ([t A, t B])=\lim _{n \rightarrow \infty}\left[\exp \left(\frac{t A}{n}\right) \exp \left(\frac{t B}{n}\right) \exp \left(\frac{-t A}{n}\right) \exp \left(\frac{-t B}{n}\right)\right]^{n^{2}}
$$

By analysis similar to the above, this limit is contained in G and so $[A, B] \in \mathfrak{g}$.
Example 3.3. We have an isomorphism of groups $\mathbb{R}_{>0} \cong e^{\mathbb{R}}$ so $\operatorname{Lie}\left(\mathbb{R}_{>0}\right)=\mathbb{R}$. Similarly, $\mathrm{U}(1, \mathbb{C}) \cong e^{i \mathbb{R}}$ so $\operatorname{Lie}(\mathrm{U}(1, \mathbb{C}))=i \mathbb{R}$.

Example 3.4. Consider the matrix Lie group $G=\mathrm{GL}(n, \mathbb{F})$. Then for any $X \in \operatorname{Mat}(n, \mathbb{F})$, $X \in \mathfrak{g}=\operatorname{Lie}(G)$ if and only if $e^{t X}$ is invertible for all $t \in \mathbb{R}$. This is clearly true so $\mathfrak{g}=\operatorname{Mat}(n, \mathbb{F})$.

Example 3.5. Consider the matrix Lie group $G=\operatorname{SL}(n, \mathbb{F})$. Then for any $X \in \operatorname{Mat}(n, \mathbb{F})$, $X \in \mathfrak{g}=\operatorname{Lie}(G)$ if and only if $e^{t X}$ is invertible and $\operatorname{det} e^{t X}=1$. This matrix is clearly invertible. We have that

$$
1=\operatorname{det} e^{t X}=e^{\operatorname{Tr} t X}=e^{t \operatorname{Tr} X}
$$

which is true for all $t \in \mathbb{R}$ if and only if $\operatorname{Tr} X=0$. Hence, $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{F})=\{A \in \operatorname{Mat}(n, \mathbb{F}) \mid \operatorname{Tr} A=0\}$.
Example 3.6. Consider the matrix Lie group $G=\mathrm{O}(n, \mathbb{F})$. Then for any $X \in \operatorname{Mat}(n, \mathbb{F})$, $X \in \mathfrak{g}=\operatorname{Lie}(G)$ if and only if $e^{t X}\left(e^{t X}\right)^{t}=\mathbb{1}_{n}$ for all $t \in \mathbb{R}$. Expanding this out we have

$$
\left(\mathbb{1}_{n}+t X+\mathcal{O}\left(t^{2}\right)\right)\left(\mathbb{1}_{n}+t X^{t}+\mathcal{O}\left(t^{2}\right)\right)=\mathbb{1}_{n}
$$

whence $X=-X^{t}$. It then follows that

$$
\left(e^{t x}\right)^{t}=e^{t X^{t}}=e^{-t X}=\left(e^{t X}\right)^{-1}
$$

and so $e^{t X} \in \mathrm{O}(n, \mathbb{F})$. We therefore have that

$$
\mathfrak{g}=\mathfrak{o}(n, \mathbb{F})=\left\{X \in \operatorname{Mat}(n, \mathbb{F}) \mid X=-X^{t}\right\}
$$

Furthermore, note that $X=-X^{t}$ implies that $\operatorname{Tr} X=0$ and so $\operatorname{det}\left(e^{t X}\right)=1$. It then follows that $e^{t X} \in \mathrm{SO}(n, \mathbb{F})$ and so $\operatorname{Lie}(\mathrm{SO}(n, \mathbb{F}))=\mathfrak{g}$.

Example 3.7. Similarly to the previous example, we can show that

$$
\operatorname{Lie}(\mathrm{U}(n, \mathbb{F}))=\left\{X \in \operatorname{Mat}(n, \mathbb{F}) \mid X=-X^{\dagger}\right\}
$$

However, $X=-X^{\dagger}$ does not guarantee that $\operatorname{Tr} X=0$ so

$$
\operatorname{Lie}(\mathrm{SU}(n, \mathbb{F}))=\left\{X \in \operatorname{Mat}(n, \mathbb{F}) \mid X=-X^{\dagger}, \operatorname{Tr} X=0\right\}
$$

Proposition 3.8. Let G be a matrix Lie group and $X \in \operatorname{Lie}(G)$. Then given any $A \in G$ we have $\operatorname{Ad}_{A}(X)=A X A^{-1} \in \operatorname{Lie}(G)$. This is referred to as the adjoint action of A on $\operatorname{Lie}(G)$.

Proof. Given $t \in \mathbb{R}$, We have that

$$
e^{t A X A^{-1}}=A e^{t X} A^{-1}
$$

but $X \in \operatorname{Lie}(G)$ so $e^{t X} \in G$ whence $A X A^{-1} \in \operatorname{Lie}(G)$.
Theorem 3.9. Let G be a matrix Lie group. Then there exists a neighbourhood U of zero in $\operatorname{Lie}(G)$ and a neighbourhood V of $\mathbb{1}_{n}$ in G such that \exp maps U homeomorphically onto V.

Proof. Omitted.
Corollary 3.10. Let G be a path-connected matrix Lie group. Then every $A \in G$ admits a decomposition

$$
A=e^{X_{1}} \cdots e^{X_{n}}
$$

for some $X_{i} \in \operatorname{Lie}(G)$.
Proof. Let E be the collection of all matrices $A \in G$ that admit a decomposition into the hypothesised form. By Theorem 3.9, E contains a neighbourhood of $\mathbb{1}_{n}$ say V. In particular, E is non-empty. Now, given any other $A \in E$, we have that $A V$ is a neighbourhood of A and so E is open in G.

On the other hand, we claim that G is also closed. Suppose $\left\{A_{n}\right\} \subseteq E$ is a sequence such that $A_{n} \rightarrow A \in G$ as $n \rightarrow \infty$. Clearly, A_{n}^{-1} for all n. Hence $A_{n}^{-1} A \rightarrow \mathbb{1}_{n}$ as $n \rightarrow \infty$. Hence, $A_{n}^{-1} A \in V$ for large enough n. Hence $A=A_{n} e^{X_{n}}$ for some $X_{n} \in \operatorname{Lie}(G)$. This is a product of elements in E so $A \in E$. Hence E contains all its limit points whence E is closed.

Finally, recall that the only clopen sets in the path-connected space X, the only clopen sets are \varnothing and X. Since E is necessarily non-empty, we must have that $E=G$. Hence every element of G admits such a decomposition.

Definition 3.11. Let G be a matrix Lie group. A one-parameter subgroup of G is a continuous group homomorphism $\varphi: \mathbb{R} \rightarrow G$.

Proposition 3.12. Let G be a matrix Lie group and φ a one-parameter subgroup of G. Then there exists $X \in \operatorname{Lie}(G)$ such that $\varphi(t)=\exp (t X)$ for all $t \in \mathbb{R}$.

Proof. By the definition of φ, we have that $\varphi(0)=\mathbb{1}_{n}$. Hence for sufficiently small t_{0}, we have $\varphi\left(t_{0}\right) \subseteq \exp (\operatorname{Lie}(G))$ by Theorem 3.9. Now let

$$
X(t)=\frac{1}{t} \log (\varphi(t))
$$

Then for $t \leq t_{0}$, we have $e^{t X(t)} \in \exp (\operatorname{Lie}(G))$. Now, given arbitrary $t \in \mathbb{R}$ and for all $N \geq 1$ we have

$$
\varphi(t)=\varphi\left(\sum_{i=1}^{N} \frac{t}{N}\right)=\left[\varphi\left(\frac{t}{N}\right)\right]^{N}=\left[\exp \left(\frac{t}{N} X\left(\frac{t}{N}\right)\right)\right]^{N}=\exp \left(t X\left(\frac{t}{N}\right)\right)
$$

We can now choose N so that $|t / N| \leq t_{0}$ so that the right hand side of the above is an element of $\exp ^{\operatorname{Lie}(G)}$.

Corollary 3.13. Let G be a matrix Lie group and φ a one-parameter subgroup of G. Then φ is smooth.

Proposition 3.14. Let G be a path-connected matrix Lie group and H an arbitrary matrix Lie group. If $\varphi: G \rightarrow H$ is a continuous homomorphism of matrix Lie groups then φ is smooth.

Proof. First assume that $A \in G$ is contained in a neighbourhood of the identity $\mathbb{1}_{n}$. By Corollary 3.10, A admits a decomposition

$$
A=e^{t_{1} X_{1}} \cdots e^{t_{n} X_{n}}
$$

where $t_{i} \in \mathbb{R}$ and $X_{i} \in \operatorname{Lie}(G)$. Then

$$
\varphi(A)=\varphi\left(e^{t_{1} X_{1}}\right) \cdots \varphi\left(e^{t_{n} X_{n}}\right)
$$

each of these is a one-parameter subgroup in the variables t_{i}. Since one-parameter subgroups are smooth and products of smooth functions are smooth, it follows that φ is smooth.

To see that φ is smooth on all of G, it suffices to realise that left-translation is a diffeomorphism of G so, any open neighbourhood B is diffeomorphic to an open neighbourhood of $\mathbb{1}_{n}$.

Theorem 3.15. Let G_{1} and G_{2} be matrix Lie groups and $\varphi: G_{1} \rightarrow G_{2}$ a homomorphism of matrix Lie groups. Then there exists a unique \mathbb{R}-linear map $\bar{\varphi}: \operatorname{Lie}\left(G_{1}\right) \rightarrow \operatorname{Lie}\left(G_{2}\right)$ such that

1. $\varphi\left(e^{X}\right)=e^{\bar{\varphi}(X)}$ for all $X \in \operatorname{Lie}\left(G_{1}\right)$
2. $\bar{\varphi}\left(A X A^{-1}\right)=\varphi(A) \bar{\varphi}(X) \varphi(A)^{-1}$ for all $X \in \operatorname{Lie}\left(G_{1}\right), A \in G$
3. $\bar{\varphi}([X, Y])=[\bar{\varphi}(X), \bar{\varphi}(Y)]$ for all $X, Y \in \operatorname{Lie}\left(G_{1}\right)$
4. $\bar{\varphi}(X)=\left.\frac{d}{d t}\left(\varphi\left(e^{t X}\right)\right)\right|_{t=0}$

Proof. Let $\mathfrak{g}=\operatorname{Lie}\left(G_{1}\right)$ and $\mathfrak{h}=\operatorname{Lie}\left(G_{2}\right)$. Since φ is continuous, $\varphi\left(e^{t X}\right)$ is a one-parameter of subgroup of G_{2} for each $X \in G_{1}$. By Proposition 3.12, there exists a unique Z such that

$$
\varphi\left(e^{t X}\right)=e^{t Z}
$$

for all $t \in \mathbb{R}$. Since $\varphi\left(e^{t X}\right) \in G_{2}$, it follows that $Z \in \mathfrak{h}$. We shall take $\bar{\varphi}(X)=Z$.
Part 1: This follows directly from the definition of $\bar{\varphi}$ by taking $t=1$. We shall use this to show that $\bar{\varphi}$ is a linear map. Let $s \in \mathbb{R}$. We need to show that $\bar{\varphi}(s X)=s \bar{\varphi}(X)$. We have that

$$
e^{t s \bar{\varphi}(X)}=\varphi\left(e^{t s X}\right)=e^{t \bar{\varphi}(s X)}
$$

for all $t \in \mathbb{R}$. We must next show that if $X, Y \in \mathfrak{g}$ then $\bar{\varphi}(X+Y)=\bar{\varphi}(X)+\bar{\varphi}(Y)$. For all $t \in \mathbb{R}$ we have

$$
e^{t \bar{\varphi}(X+Y)}=e^{\bar{\varphi}(t(X+Y))}=\varphi\left(e^{t(X+Y)}\right)
$$

By the Trotter Product Formula and the fact that φ is continuous, we have

$$
\begin{aligned}
e^{t \bar{\varphi}(X+Y)} & =\varphi\left[\lim _{n \rightarrow \infty}\left(\exp \left(\frac{t X}{n}\right) \exp \left(\frac{t Y}{n}\right)\right)^{n}\right] \\
& =\lim _{n \rightarrow \infty}\left[\varphi\left(\exp \left(\frac{t X}{n}\right)\right) \varphi\left(\exp \left(\frac{t Y}{n}\right)\right)\right]^{n} \\
& =\lim _{n \rightarrow \infty}\left(e^{t \bar{\varphi}(X) / n} e^{t \bar{\varphi}(X) / n}\right)^{n} \\
& =e^{t(\bar{\varphi}(X)+\bar{\varphi}(Y))}
\end{aligned}
$$

and so $\bar{\varphi}(X+Y)=\bar{\varphi}(X)+\bar{\varphi}(Y)$ as desired.
Part 2: We now show that $\bar{\varphi}\left(A X A^{-1}\right)=\varphi(A) \bar{\varphi}(X) \varphi(A)^{-1}$ for all $X \in \mathfrak{g}$ and $A \in G$. We have that

$$
\begin{aligned}
e^{t \bar{\varphi}\left(A X A^{-1}\right)} & =e^{\bar{\varphi}\left(t A X A^{-1}\right)} \\
& =\varphi\left(e^{t A X A^{-1}}\right) \\
& =\varphi\left(A e^{t X} A^{-1}\right) \\
& =\varphi(A) \varphi\left(e^{t X}\right) \varphi(A)^{-1} \\
& =\varphi(A) e^{t \bar{\varphi}(X)} \varphi(A)^{-1}
\end{aligned}
$$

and so $\bar{\varphi}\left(A X A^{-1}\right)=\varphi(A) \bar{\varphi}(X) \varphi(A)^{-1}$ as desired.
Part 3: We now show that $\bar{\varphi}([X, Y])=[\bar{\varphi}(X), \bar{\varphi}(Y)]$ for all $X, Y \in \mathfrak{g}$. It is easy to see using the product rule that the following identity holds:

$$
[X, Y]=\left.\frac{d}{d t}\left(e^{t X} Y e^{-t X}\right)\right|_{t=0}
$$

Hence

$$
\bar{\varphi}([X, Y])=\bar{\varphi}\left(\left.\frac{d}{d t}\left(e^{t X} Y e^{-t X}\right)\right|_{t=0}\right)=\left.\frac{d}{d t} \bar{\varphi}\left(e^{t X} Y e^{-t X}\right)\right|_{t=0}
$$

By Part 2 we then have

$$
\begin{aligned}
\bar{\varphi}([X, Y]) & =\left.\frac{d}{d t} \varphi\left(e^{t X}\right) \bar{\varphi}(Y) \varphi\left(e^{t X}\right)\right|_{t=0} \\
& =\left.\frac{d}{d t} e^{t \bar{\varphi}(X)} \bar{\varphi}(Y) e^{-t \bar{\varphi}(X)}\right|_{t=0} \\
& =[\bar{\varphi}(X), \bar{\varphi}(Y)]
\end{aligned}
$$

as required.
Part 4: This follows directly from the definition of $\bar{\varphi}$.

Theorem 3.16. Let G_{1} and G_{2} be matrix Lie groups and $\varphi, \psi: G_{1} \rightarrow G_{2}$ a homomorphism. Let $\bar{\varphi}, \bar{\psi}: \operatorname{Lie}\left(G_{1}\right) \rightarrow \operatorname{Lie}\left(G_{2}\right)$ be the induced linear maps of Lie algebras. If G_{1} is pathconnected and $\bar{\varphi}=\bar{\psi}$ then $\varphi=\psi$.

Proof. Since G_{1} is connected, every $A \in G_{1}$ admits a decomposition

$$
A=e^{X_{1}} \ldots e^{X_{n}}
$$

where $X_{i} \in \operatorname{Lie}\left(G_{1}\right)$. Now, if $\bar{\varphi}=\bar{\psi}$ we have

$$
\varphi\left(e^{X_{1}} \cdots e^{X_{n}}\right)=e^{\bar{\varphi}\left(X_{1}\right) \cdots \bar{\varphi}\left(X_{n}\right)}=e^{\bar{\psi}\left(X_{1}\right) \cdots \bar{\psi}\left(X_{n}\right)}=\psi\left(e^{X_{1}} \cdots e^{X_{n}}\right)
$$

Theorem 3.17. Let G_{1} and G_{2} be matrix Lie groups with associated Lie algebras \mathfrak{g}_{1} and \mathfrak{g}_{2} respectively. Let $\alpha: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ be a Lie algebra homomorphism. If G_{1} is path-connected and simply connected then there exists a unique Lie group homomorphism $\phi: G_{1} \rightarrow G_{2}$ such that $\bar{\phi}=\alpha$.

Proof. Omitted.
Corollary 3.18. Let G_{1} and G_{2} be path-connected and simply connected matrix Lie groups with associated Lie algebras \mathfrak{g}_{1} and \mathfrak{g}_{2} respectively. Then $G_{1} \cong G_{2} \Longleftrightarrow \mathfrak{g}_{1} \cong \mathfrak{g}_{2}$.

Theorem 3.19. Let G be a path-connected and simply connected matrix Lie group and \mathfrak{g} its associated Lie algebra. If G^{\prime} is a matrix Lie group whose Lie algebra is isomorphic to \mathfrak{g} then $G^{\prime} \cong G / Z$ for some discrete subgroup $Z \subseteq Z(G) .{ }^{1}$

Proof. Omitted.
Theorem 3.20. Let \mathfrak{g} be a finite-dimensional Lie algebra. Then \mathfrak{g} is isomorphic to the Lie algebra of some matrix Lie group.
${ }^{1} Z(G)$ is the centre of G : all elements in G that commute

4 Abstract Lie Algebras

Throughout this section, we will let the base field of the Lie algebras be $\mathbb{F}=\mathbb{R}$ or \mathbb{C}.
Definition 4.1. Let $(L,[\cdot, \cdot])$ be a Lie algebra. We say that L is abelian if for all $x, y \in L$ we have $[x, y]=0$.

Example 4.2. Let $(L,[\cdot, \cdot])$ be a one-dimensional Lie algbera. Then L is abelian. Indeed, Let x be the single basis element for L. Then, by anti-symmetry we have $[x, x]=-[x, x]$ so $[x, x]=0$. Extending this by bilinearity, we see that $[x, y]=0$ for all $x, y \in L$. Hence, over any field \mathbb{F}, there exists only one
Definition 4.3. Let $\left(L_{1},[\cdot, \cdot]_{1}\right.$ and $\left(L_{2},[\cdot, \cdot]_{2}\right)$ be Lie algebras over \mathbb{F}. A homomorphism of Lie algebras from L_{1} to L_{2} is a \mathbb{F}-linear map $\varphi: L_{1} \rightarrow L_{2}$ such that

$$
[\varphi(x), \varphi(y)]_{2}=\varphi\left([x, y]_{1}\right)
$$

for all $x, y \in L_{1}$. We say that φ is an isomorphism if it is invertible and an automorphism if it is an isomorphism and $L_{1}=L_{2}$.

Example 4.4. Let V be an \mathbb{F}-vector space. Then $\mathfrak{g l}(V)=\operatorname{End}(V)$ is a Lie algebra over \mathbb{F} with Lie bracket given by commutator of endomorphisms. For example, if $V=\mathbb{F}^{n}$ then $\mathfrak{g l}(V)=\operatorname{Mat}(n, \mathbb{F})$.

Definition 4.5. Let L be a Lie algebra over \mathbb{F}. A representation of L on an \mathbb{F}-vector space V is a Lie algebra homomorphism $\varphi: L \rightarrow \mathfrak{g l}(V)$.
Definition 4.6. Let $(L,[\cdot, \cdot])$ be a Lie algebra. Let $U, V \subseteq L$ be linear subspaces of L. We define $[U, V]$ to be the linear subspace of L given by

$$
[U, V]=\operatorname{span}_{\mathbb{F}}\{[u, v] \mid u \in U, v \in V\}
$$

Definition 4.7. Let $(L,[\cdot, \cdot])$ be a Lie algebra over \mathbb{F}. A subspace $H \subseteq L$ is a sub-Lie algebra if H is closed under the Lie bracket. In other words, $[H, H] \subseteq H$.

Definition 4.8. Let $(L,[\cdot, \cdot])$ be a Lie algebra over \mathbb{F}. A subspace $H \subseteq L$ is an ideal if $[L, I] \subseteq I$.

Remark. Note that an ideal of a Lie algebra is a sub-Lie algebra.
Lemma 4.9. Let $\left(L_{1},[\cdot, \cdot]_{1}\right)$ and $\left(L_{2},[\cdot, \cdot]_{2}\right)$ be Lie algebras over \mathbb{F}. Then

1. If $I \subseteq L_{1}$ is an ideal then

$$
L_{1} / I=\left\{x+I \mid x \in L_{1}\right\}
$$

is a Lie algebra over \mathbb{F} with Lie bracket given by $[x+I, y+I]=[x, y]_{1}+I$. Furthermore. $\pi: L \rightarrow L_{1} / I$ is a surjective homomorphism of Lie algebras.
2. If $\varphi: L_{1} \rightarrow L_{2}$ is a homomorphism of Lie algebras then $\operatorname{ker} \phi$ is an ideal of L_{1} and $\operatorname{im} \phi$ is a sub-Lie algebra of L_{2}. Furthermore,

$$
L_{1} / \operatorname{ker} \phi \cong \operatorname{im} \phi
$$

3. If $I, J \subseteq L_{1}$ are ideals then $I+J, I \cap J$ and $[I, J]$ are all ideals of L.
4. If $I, J \subseteq L_{1}$ are ideals then

$$
(I+J) / J \cong I /(I \cap J)
$$

Proof.

Part 1: The quotient space is always an \mathbb{F}-vector space so we just need to show that the Lie bracket is bilinear, antisymmetric and satisfies the Jacobi identity. To this end, let $\lambda \in \mathbb{F}$ and $x, y, z \in L_{1}$. Then

$$
\begin{aligned}
{[(x+I)+\lambda(y+I), z+I]=[(x+\lambda y)+I, z+I] } & =[x+\lambda y, z]_{1}+I \\
& =\left([x, z]_{1}+\lambda[y, z]_{1}\right)+I \\
& =\left([x, z]_{1}+I\right)+\left(\lambda[y, z]_{1}+I\right) \\
& =[x, z]+\lambda[y, z]
\end{aligned}
$$

Hence $[\cdot, \cdot]$ is linear in the first argument. The same proof works for the second argument and so the Lie bracket is bilinear. For antisymmetricity, we have

$$
[x+I, y+I]=[x, y]_{1}+I=-[y, x]_{1}+I=-\left([y, x]_{1}+I\right)=-[y, x]
$$

And finally, for the Jacobi identity, we have

$$
\begin{aligned}
& {[x+I,[y+I, z+I]]+[z+I,[x+I, y+I]]+[y+I,[z+I, x+I]]} \\
& =\left[x+I,\left([y, z]_{1}+I\right)\right]+[z+I,([x, y]+1+I)]+[y+I,([z, x]+I)] \\
& =\left(\left[x,[y, z]_{1}\right]_{1}+I\right)+\left(\left[z,[x, y]_{1}\right]_{1}+I\right)+\left(\left[y,[z, x]_{1}\right]_{1}+I\right) \\
& =\left[x,[y, z]_{1}\right]_{1}+\left[z,[x, y]_{1}\right]_{1}+\left[y,[z, x]_{1}\right]_{1}+I \\
& =0+I
\end{aligned}
$$

and so $[\cdot, \cdot]$ satisfies the Jacobi identity. We thus see that L_{1} / I is a Lie algebra.
Part 2: We first show that $\operatorname{ker} \varphi$ is an ideal of L_{1}. Let $x \in L_{1}$ and $y \in \operatorname{ker} \varphi$. We need to show that $[x, y] \in \operatorname{ker} \varphi$. We have that

$$
\varphi\left([x, y]_{1}\right)=[\varphi(x), \varphi(y)]_{2}=[\varphi(x), 0]_{2}=0
$$

Now suppose that $x, y \in \operatorname{im} \varphi$. We need to show that $[x, y]_{2} \in \operatorname{im} \varphi$. There exists $a, b \in L_{1}$ such that $\varphi(a)=x, \varphi(b)=y$ and so

$$
[x, y]_{2}=[\varphi(a), \varphi(b)]_{2}=\varphi\left([a, b]_{1}\right) \in \operatorname{im} \varphi
$$

We now tackle the isomorphism. Define

$$
\begin{array}{r}
\bar{\pi}: L_{1} / \operatorname{ker} \pi \rightarrow \operatorname{im} \pi \\
x+\operatorname{ker} \pi \mapsto \pi(x)
\end{array}
$$

We claim that $\bar{\pi}$ is an isomorphism of Lie algebras. We must first check that the mapping is well-defined. In other words, if $x+\operatorname{ker} \pi=y+\operatorname{ker} \pi$ then $\bar{\pi}(x+\operatorname{ker} \pi)=\bar{\pi}(y+\operatorname{ker} \pi)$. By hypothesis, we have that $(y-x)+\operatorname{ker} \pi=0+\operatorname{ker} \pi$. We have that

$$
\bar{\pi}(x+\operatorname{ker} \pi)=\pi(x)+\pi(y-x)=\pi(y)=\bar{\pi}(y+\operatorname{ker} \pi)
$$

We must next check that $\bar{\pi}$ is indeed a homomorphism of Lie algebras. In other words, we must check that $\bar{\pi}$ preserves the Lie bracket structure. We have that
$[\bar{\pi}(x+\operatorname{ker} \pi), \bar{\pi}(y+\operatorname{ker} \pi)]_{2}=[\pi(x), \pi(y)]_{2}=\pi\left([x, y]_{1}\right)=\bar{\pi}\left([x, y]_{1}+\operatorname{ker} \pi\right)=\bar{\pi}([x+\operatorname{ker} \pi, y+\operatorname{ker} \pi])$
To show that $\bar{\pi}$ is an isomorphism, we need to show that it is both injective and surjective. For injectivity, it suffices to show that $\operatorname{ker} \bar{\pi}$ is trivial. To this end, let $x+\operatorname{ker} \pi \in \operatorname{ker} \bar{\pi}$. Then

$$
0=\bar{\pi}(x+\operatorname{ker} \pi)=\pi(x)
$$

It follows that $x \in \operatorname{ker} \pi$ and so $x+\operatorname{ker} \pi=0+\operatorname{ker} \pi$ whence $\operatorname{ker} \bar{\pi}$ is trivial. Now, for surjectivity, given $y \in \operatorname{im} \pi$, we need to find $x \in L_{1} / \operatorname{ker} \pi$ such that $\bar{\pi}(x)=y$. Since $y \in \operatorname{im} \pi$, there exists $x \in L_{1}$ such that $\pi(x)=y$. Then

$$
\bar{\pi}(x+\operatorname{ker} \pi)=\pi(x)=y
$$

and so $\bar{\pi}$ is surjective. We have thus shown that $\bar{\pi}: L_{1} / \operatorname{ker} \pi \rightarrow \operatorname{im} \pi$ is an isomorphism of Lie algebras.
Part 3: Let $a \in I, b \in J$ and $x \in L_{1}$. We need to show that $[x, a+b]_{1} \in I+J$. We have that

$$
[x, a+b]_{1}=[x, a]_{1}+[x, b]+1 \in I+J
$$

Next, let $a \in I \cap J$ and $x \in L_{1}$. We need to show that $[x, a] \in I \cap J$. Since I and J are ideals, $[x, a] \in I$ and $[x, a] \in J$ so $[x, a] \in I \cap J$.

Finally, let $a \in I, b \in J$ and $x \in L_{1}$. We need to show that $[x,[a, b]] \in[I, J]$. By the Jacobi identity, we have

$$
[x,[a, b]]=-[b,[x, a]]-[a,[b, x]]
$$

Now since I and J are ideals, $[x, a] \in I$ and $[b, x] \in J$. It then follows that the two terms in the right hand side of the above are elements of $[I, J]$.
Part 4: Let $i_{1}+j_{1}, i_{2}+j_{2} \in I+J$. Considering these modulo J, we see that the j_{i} are irrelevant so we are interested in seeing how i_{1} and i_{2} can be equivalent modulo J. This happens exactly when $i_{1}-i_{2} \in J$. But their difference is also an element of I so $i_{1}-i_{2} \in I \cap J$.

Proposition 4.10. Let $(L,[\cdot, \cdot])$ be a Lie algebra. Then the center $Z(L)=\{x \in L \mid[x, y]=0 \forall y \in L\}$ and the commutant $[L, L]=\{[x, y] \mid x, y \in L\}$ are both ideals. In particular, $L /[L, L]$ is an abelian Lie algebra.
Proof. Let $x \in L$ and $y \in Z(L)$. We need to show that $[x, y] \in Z(L)$. By definition, $[x, y]=0$. Hence for all $z \in L$ we have $[z,[x, y]]=[z, 0]=0$ whence $[x, y] \in Z(G)$.

Now let $[x, y] \in[L, L]$ and $z \in L$. We need to show that $[z,[x, y]] \in[L, L] .[x, y]$ is clearly in L whence $[z,[x, y]] \in[L, L]$. It is easy to see that $L /[L, L]$ is abelian. Indeed, let $[\cdot, \cdot]^{\prime}$ be the bracket of the quotient space $L /[L, L]$. We have for all $x+[L, L], y+[L, L] \in L /[L, L]$

$$
[x+[L, L], y+[L, L]]^{\prime}=[x, y]+[L, L]=0+[L, L]
$$

and so $L /[L, L]$ is abelian.
Example 4.11. Let $L=\mathfrak{g l}(n, \mathbb{F})=\operatorname{Mat}(n, \mathbb{F})$. Then the Lie bracket is simply the matrix commutator. To find the commutant $[L, L]$, let $X, Y \in L$. Then $[X, Y]=X Y-Y X$. Note that $\operatorname{Tr} X Y-Y X=0$ and so $[L, L]=\mathfrak{s l}(n, \mathbb{F})$. Now, since traceless matrices are always commutators of traceless matrices, it follows that $[\mathfrak{s l}(n, \mathbb{F}), \mathfrak{s l}(n, \mathbb{F})]=\mathfrak{s l}(n, \mathbb{F})$.

5 Solvable and Nilpotent Lie Algebras

Definition 5.1. Let L be a Lie algebra. We say that L is simple if L is non-abelian and has no non-trivial ideals. In other words, its only ideals are $\{0\}$ and L.

Remark. If L is a simple Lie algebra then $Z(L)=0$ and $[L, L]=L$. Indeed, the only ideals of L are $\{0\}$ and L. Since L is non-abelian, $[L, L]$ is non-empty so we must have $[L, L]=L$. The only possibility for $Z(L)$, then, is $\{0\}$.

Definition 5.2. Let $(L,[\cdot, \cdot])$ be a Lie algebra. We define the derived series of L, denoted $D^{i} L$ to be the sequence of Lie algebras given by $D^{0} L=L, D^{i+1} L=\left[D^{i} L, D^{i} L\right]$ for $i \geq 0$. We say that L is solvable if $D^{n} L=\{0\}$ for large enough n.

Proposition 5.3. Let L be a Lie algebra. Then

1. $D^{i} L$ is an ideal of L and in $D^{i-1} L$. Furthermore, $D^{i} L / D^{i+1} L$ is abelian.
2. If L is abelian then L is solvable.
3. If L is solvable then there exists a finite sequence of ideals $\{0\}=I^{n} \subseteq I^{n-1} \cdots \subseteq$ $I^{1} \subseteq I^{0}=L$ such that I^{i} / I^{i+1} is Abelian. In particular, $I^{i}=D^{i} L$.

Proof.
Part 1: We first show that $D^{i} L$ is an ideal in L. We shall prove this by induction on i. First suppose that $i=0$. Then $D^{0} L=L$ which is clearly an ideal. Now suppose that it holds for $n-1$. By the Jacobi identity ${ }^{2}$, we have

$$
\begin{aligned}
{\left[L, D^{i} L\right]=\left[L,\left[D^{i-1} L, D^{i-1} L\right]\right] } & =-\left[D^{i-1} L, D^{i-1} L\right]-\left[D^{i-1} L,\left[L, D^{i-1} L\right]\right] \\
& \subseteq-D^{i} L-\left[D^{i-1} L, D^{i-1} L\right] \\
& \subseteq D^{i} L
\end{aligned}
$$

where we have used the induction hypothesis to see that $\left[L, D^{i-1} L\right] \subseteq D^{i-1} L$. Now we look at $D^{i} L$ as an ideal in $D^{i-1} L$:

$$
\left[D^{i-1} L, D^{i} L\right]=\left[D^{i-1} L,\left[D^{i-1} L, D^{i-1} L\right]\right] \subseteq\left[D^{i-1} L, D^{i-1} L\right]=D^{i-1} L
$$

Where we have used the fact that $D^{i-1} L$ is an ideal in itself so that $\left[D^{i-1} L, D^{i-1} L\right] \subseteq D^{i-1} L$.
Finally, we show that $D^{i} L / D^{i+1} L$ is abelian. Let $[\cdot, \cdot]^{\prime}$ be the Lie bracket on the quotient space $D^{i} L / D^{i+1} L$. Suppose that $x+D^{i+1} L, y+D^{i+1} L \in D^{i} L / D^{i+1} L$. Then

$$
\left[x+D^{i+1} L, y+D^{i+1} L\right]^{\prime}=[x, y]+D^{i+1} L
$$

Now, $x, y \in D^{i} L$ and so $[x, y] \in\left[D^{i} L, D^{i} L\right]=D^{i+1} L$ whence $[x, y]+D^{i+1} L=0+D^{i+1} L$. It then follows that this quotient space is abelian.
Part 2: If L is abelian then $[L, L]=\{0\}$ and so it solvable.
Part 3: This is just the first part restated.

[^0]Definition 5.4. Let $(L,[\cdot, \cdot])$ be a Lie algebra. We define the lower central series $D_{i} L$ of L to be the sequence of Lie algebras given by $D_{0} L=L$ and $D_{i+1} L=\left[L, D_{i} L\right]$ for $i \geq 0$. We say that L is nilpotent if $D_{n} L=\{0\}$ for sufficiently large n.

Proposition 5.5. Let L be a Lie algebra. Then

1. $D_{i} L$ is an ideal of L and of $D_{i-1} L$.
2. If L is abelian then L is nilpotent.

Proof. Part 1: We first show that $D_{i} L$ is an ideal in L. We shall prove this by induction on i. First suppose that $i=0$. Then $D_{0} L=L$ which is clearly an ideal in L. Now suppose that it holds true for $i-1$. We have

$$
\left[L, D_{i} L\right]=\left[L,\left[L, D_{i-1} L\right]\right] \subseteq\left[L, D_{i-1} L\right]=D_{i} L
$$

where we have used the induction hypothesis to see that $\left[L, D_{i-1} L\right] \subseteq D_{i-1} L$.
To show that $D_{i} L$ is an ideal of $D_{i-1} L$, we have

$$
\left[D_{i-1} L, D_{i} L\right]=\left[D_{i-1} L,\left[L, D_{i-1} L\right]\right] \subseteq\left[D_{i-1} L, L\right]=\left[L, D_{i-1} L\right]=D_{i} L
$$

Part 2: Suppose that L is abelian. Then $D_{0} L=[L, L]=\{0\}$ and so L is nilpotent.

Proposition 5.6. Let $(L,[\cdot, \cdot])$ be a Lie algebra. Then

1. If L is nilpotent then L is solvable.
2. If L is solvable (nilpotent) then all sub-Lie algebras, quotients L / I for some ideal $I \subseteq L$ and homomorphic images $\varphi(L)$ are solvable (nilpotent).
3. Let I be an ideal of L such that I is solvable and L / I is solvable. Then L is solvable.

Proof. Part 1: It suffices to show that $D^{i} L \subseteq D_{i} L$. We prove this by induction. Let $i=0$. Then clearly, $D^{0} L=L=D_{0} L$. Now, suppose that it holds for $i-1$. We have that

$$
D^{i} L=\left[D^{i-1} L, D^{i-1} L\right] \subseteq\left[L, D_{i-1} L\right]=D_{i} L
$$

Now, since L is nilpotent, for large enough n, we have that

$$
D^{n} L=D_{i} L=\{0\}
$$

whence L is solvable.
Part 2: We shall prove the statements about solvability, the same arguments follow through for nilpotency. Assume that L is solvable and $H \subseteq L$ is a sub-Lie algebra. We shall show by induction that $D^{i} H \subseteq D^{i} L$. If $i=0$ then $D^{0} H=H \subseteq L=D^{0} L$. Now suppose it holds true for $i-1$. We have that

$$
D^{i} H=\left[D^{i-1} H, D^{i-1} H\right] \subseteq\left[D^{i-1} L, D^{i-1} L\right]=D^{i} L
$$

Hence if $D^{i} H$ is solvable.
Now suppose that I is an ideal and let $[\cdot, \cdot]^{\prime}$ be the commutator of the quotient space L / I. Recall that the natural quotient map $\pi: L \rightarrow L / I$ is surjective. It suffices to
show that $D^{i} L$ surjects onto $D^{i} L / I$. We shall prove this by induction. If $i=0$ then $\pi\left(D^{0} L\right)=\pi(L)=L / I=D^{0}(L / I)$. Now suppose that it holds true for $i-1$. Then
$\pi\left(D^{i} L\right)=\pi\left(\left[D^{i-1} L, D^{i-1} L\right]\right)=\left[\pi\left(D^{i-1} L\right), \pi\left(D^{i-1} L\right)\right]^{\prime}=\left[D^{i-1}(L / I), D^{i-1}(L / I)\right]=D^{i}(L / I)$
Hence for large enough $n, D^{n}(L / I)=\{0\}$.
The same idea works for any other surjective homomorphism of Lie algebras.
Part 3: Let $\pi: L \rightarrow L / I$ be the canonical surjection. Note that ker $\pi=I$. Since L / I is solvable, we have that

$$
\{0\}=D^{n}(L / I)=\pi\left(D^{n} L\right)
$$

for large enough n and so $D^{n} L \subseteq \operatorname{ker} \pi=I$. Now if I is solvable then $D^{m} I=\{0\}$ for large enough m. Then

$$
D^{n+m}(L)=D^{m}\left(D^{n}(L)\right) \subseteq D^{m}(I)=\{0\}
$$

and so L is solvable.

Example 5.7. Consider the following sets of matrices:

$$
\begin{aligned}
t(n, \mathbb{F}) & =\left\{A \in \operatorname{Mat}(n, \mathbb{F}) \mid A_{i j}=0 \forall i>j\right\} \\
n(n, \mathbb{F}) & =\left\{A \in \operatorname{Mat}(n, \mathbb{F}) \mid A_{i j}=0 \forall i \geq j\right\}
\end{aligned}
$$

in other words, $t(n, \mathbb{F})$ and $n(n, \mathbb{F})$ are the collections of all $n \times n$ strictly upper triangular and upper triangular matrices respectively. Both are Lie algebras and $[t, t] \subseteq n$. Now note that n is nilpotent. Indeed, mutliplying strictly upper triangular matrices together pushes the non-zero elements towards the upper right corner of the matrix. This implies that taking repeated commutators of strictly upper triangular matrices eventually gives zero and so n is nilpotent. This implies that t is solvable. Indeed, $t /[t, t]$ is abelian and thus solvable. Furthermore, $[\mathrm{t}, \mathrm{t}]$ is solvable since it is a sub-Lie algebra of the nilpotent Lie algebra n. Hence t is solvable.

Lemma 5.8. Let V be an n-dimensional \mathbb{F}-vector space, $L \subseteq \mathfrak{g l}(n, \mathbb{F})$ a Lie algebra and $I \subseteq L$ an ideal. If $\lambda: I \rightarrow \mathbb{F}$ is a linear functional and

$$
W_{I, \lambda}=\{v \in V \mid Y v=\lambda(Y) v \forall Y \in I\}
$$

Then $L W_{I, \lambda} \subseteq W_{I, \lambda}$
Proof. We need to show that $X w \in W_{I, \lambda}$ for all $w \in W_{I, \lambda}, x \in L$. In other words, we need to show that $Y X w=\lambda(Y) X w$ for all $Y \in I, x \in L$ and $w \in W_{I, \lambda}$. We have that

$$
\begin{equation*}
Y X w=X Y w+[Y, X] w=X(\lambda(y) w)+\lambda([Y, X]) w=\lambda(y) X w+\lambda([Y, X]) w \tag{1}
\end{equation*}
$$

It thus suffices to prove that $\lambda([Y, X])=0$ for all $Y \in I, X \in L$. Since V is finite dimensional, there exists a least natural number m such that the sequence $w, X w, X^{2} w, \ldots, X^{m} w$ is linearly independent. Let U be the subspace spanned by these vectors. Fix $0 \neq w \in W_{I, \lambda}$ and $X \in L$. We first claim that for all $Y \in I$ we have

$$
Y X^{i} w=\lambda(Y) X^{i} w+\sum_{j<i} \alpha_{j} X^{j} w
$$

for some $\alpha_{j} \in \mathbb{F}$. We shall show this by induction on i. For $i=0$, this is clear by the definition of $W_{I, \lambda}$. If $i=1$ then this holds by Equation 1. Now suppose that it holds true up to $i-1$. Then

$$
Y X^{i} w=[Y, X] X^{i-1} w+X Y X^{i-1} w
$$

Now, $[Y, X] \in I$ and so, by the induction hypothesis, we have

$$
Y X^{i} w=\lambda(Y) X^{i} w+\mathcal{X}^{〉-\infty} \sqsupseteq
$$

which proves the claim. Now, this formula implies that, with respect to the basis $w, X w, \ldots, X^{m} w$, any $y \in I$ is represented by an upper triangular matrix, say ρ_{y}, with the $\lambda(Y)$ on the diagonal. Then

$$
\operatorname{Tr} \rho_{y}=(m+1) \lambda(Y)
$$

for all $Y \in I$. Furthermore, $[Y, X] \in I$ and so

$$
(m+1) \lambda([Y, X])=\operatorname{Tr} \rho_{[Y, X]}=\operatorname{Tr}\left(\left[\rho_{Y}, \rho_{X}\right]\right)=0
$$

This implies that $\lambda([Y, X])=0$ as required.
Theorem 5.9 (Lie's Theorem). Let L be a solvable Lie algebra over \mathbb{F} and $\rho: L \rightarrow \operatorname{End}(V)$ a representation of L on a complex vector space V. Then there exists a non-zero $v \in V$ which is a common eigenvector of $\rho(X)$ for all $X \in L$.

Proof. We prove the theorem by induction on $\operatorname{dim}_{\mathbb{F}} L$. First suppose that $\operatorname{dim} L=1$. Then $\rho(L)$ is one-dimensional. Picking an element of $\rho(L)$, we can put it into Jordan Normal Form and then all other elements of $\rho(L)$ will have a common eigenvector with this element (since they are simply constant multiples of this distinguished element).

Now suppose the claim is true for all solvable Lie algebras \bar{L} of dimension $\operatorname{dim} \bar{L} \leq n-1$. Let $n=\operatorname{dim} L$. Since L is solvable, we have that $[L, L] \subsetneq L$ so we can choose non-zero $X \in L \backslash[L, L]$. Then we can write $L=\mathbb{F} X \oplus H$ for some ideal $H \subseteq L$ such that $[L, L] \subseteq H$. Then $\operatorname{dim} H=n-1$ and H is solvable. By the induction hypothesis, there exists $0 \neq v_{0} \in V$ and $\lambda \in H^{*}$ such that $\rho(Y) v_{0}=\lambda_{Y} v_{0}$ for all $Y \in H$. Now let

$$
W_{H, \lambda}=\{v \in V \mid \rho(Y) v=\lambda(Y) v \forall Y \in H\}
$$

By Lemma 5.8, this collection is L-invariant. This implies that $\rho(X)$ is a linear map from $W_{H, \lambda}$ to $W_{H, \lambda}$. This map can be put into Jordan Normal Form and thus has an eigenvector $w_{0} \in W_{H, \lambda}$. Hence $\rho(X) w_{0}=\lambda_{X} w_{0}$ for some $\lambda_{X} \in \mathbb{C}$. We can therefore use this to extend $\lambda \in H^{*}$ to $\bar{\lambda} \in L^{*}$ by setting $\left.\bar{\lambda}\right|_{H}=\lambda$ and $\left.\bar{\lambda}\right|_{\mathbb{F} X}=\lambda_{X}$. This is exactly what it means for $\rho(X)$ to have a common eigenvector for all $X \in L$.

Corollary 5.10. Let L be a Lie algebra. Then

1. If L is solvable and $\rho: L \rightarrow \operatorname{End}(V)$ is a representation on a \mathbb{C}-vector space V of L then there exists a basis of V in which all $\rho(X)$ is upper triangular for all $X \in L$.
2. If L is solvable then any irreducible complex representation of L is one-dimensional.
3. L is solvable if and only if $[L, L]$ is nilpotent.

Proof. Omitted.

Definition 5.11. Let L be a Lie algebra and $\rho: L \rightarrow \operatorname{End}(V)$ a representation of L on a vector space V. We say that a subspace $W \subseteq V$ is invariant if $\rho(X) W \subseteq W$ for all $X \in L$. Furthermore, we say that ρ is irreducible if $\{0\}$ and V are the only invariant subspaces of V.
Theorem 5.12 (Engel's Theorem). Let L be a Lie algebra. Then L is nilpotent if and only if for all $X \in L, \operatorname{ad}_{X}: L \rightarrow L$ is nilpotent.

6 Semisimple Lie Algebras and Killing Forms

Definition 6.1. Let L be a Lie algebra over \mathbb{F}. We say that L is semisimple if it has no non-zero solvable ideals. Furthermore, we say that L is reductive if any solvable ideal is contained in the centre $Z(L)$.
Proposition 6.2. Let L be a Lie algebra over \mathbb{F}. Then L has a unique maximal solvable ideal called the radical ideal and denoted $\operatorname{rad}(L)$.
Proof. Let I_{1} and I_{2} be solvable ideals in L. We first clam that $I_{1}+I_{2}$ is solvable. Recall that we have an isomorphism of ideals

$$
\frac{I+1+I_{2}}{I_{1}} \cong \frac{I_{2}}{I_{1} \cap I_{2}}
$$

The right hand side is clearly solvable as the quotient of a solvable Lie algebra. Since I_{1} is solvable, it follows that $I_{1}+I_{2}$ is solvable. By induction, we see that the sum of all solvable ideals is solvable and is clearly the maximal unique such ideal.
Proposition 6.3. Let L be a Lie algebra. Then

1. L is semisimple if and only if $\operatorname{rad}(L)=\{0\}$.
2. L is reductive if and only if $\operatorname{rad}(L)=Z(L)$.
3. L simple $\Longrightarrow L$ semisimple $\Longrightarrow L$ reductive.
4. $L / \operatorname{rad}(L)$ is semisimple.
5. L is semisimple if and only if it has no non-zero abelian ideals.

Proof.

Part 1: First suppose that L is semisimple. Then L has no non-zero solvable ideals so, clearly, $\operatorname{rad}(L)=\{0\}$. Conversely, any solvable ideal is necessarily contained in $\operatorname{rad}(L)$. But $\operatorname{rad}(L)=\{0\}$ so this is the only possible solvable ideal.
Part 2: First suppose that L is reductive. Then every solvable ideal of L is contained in $Z(L)$. In particular, $\operatorname{rad}(L) \subseteq Z(L)$. Now $Z(L)$ is an ideal of L that is also an abelian sub-Lie algebra so $Z(L)$ is itself solvable. Hence $Z(L) \subseteq \operatorname{rad}(L)$ and so $\operatorname{rad}(L)=Z(L)$. Conversely, suppose that $\operatorname{rad}(L)=Z(L)$. Then every solvable ideal of L is contained in $Z(L)$ whence L is reductive.
Part 3: If L is simple then it has no non-trivial ideals. Hence the only possible solvable ideal is $\{0\}$ whence L is semisimple. Furthermore, $\{0\} \subseteq Z(L)$ and so L is reductive.
Part 4: Let I be a solvable ideal of $L / \operatorname{rad}(L)$. Let $\pi: L \rightarrow L / \operatorname{rad}(L)$ be the canonical surjection. Consider the ideal $\bar{I}=\pi^{-1}(I)$. Then $\operatorname{rad}(L) \subseteq \bar{I}$ and $\bar{I} / \operatorname{rad}(L)=I$ whence \bar{I} is solvable. But then $\operatorname{rad}(L)=\bar{I}$ whence $I=\{0\}$.
Part 5 First suppose that L is semisimple. Then the only solvable ideals of L is $\{0\}$. Since any abelian ideal would necessarily be solvable, the only possible abelian ideal of L is $\{0\}$.

Conversely, assume that L is not semisimple. Then there exists a non-zero solvable ideal I. In other words, $D^{n} I=\{0\}$ for sufficiently large n. Let N be smallest such N. Then $\{0\}=D^{N} I=\left[D^{N-1} I, D^{N-1} I\right]$ and so $D^{N-1} I$ is an abelian ideal in L.

Example 6.4. $L=\mathfrak{s l}(n, \mathbb{F})$ is simple. We shall prove this in the case that $n=2$. Recall that this Lie algebra consists of all traceless matrices in $\operatorname{Mat}(2, \mathbb{F})$. This has a basis given by matrices of the form

$$
H=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), E=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), F=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

These matrices satisfy the relations $[H, E]=F,[F, H]=2 H,[F, E]=-2 E$. Now let $I \subseteq L$ be a non-zero ideal and let $x=\alpha H+\beta E+\gamma F \in I$ for $\alpha, \beta, \gamma \in \mathbb{C}$ not all zero. First suppose that both α and β are zero. Then γ is non-zero $z=\gamma F \in I$ whence $F \in I$. Now, $[E, F]=2 E \in I$ and so also $E \in I$. Furthermore, $[H, F]=-2 H \in I$ and so $H \in I$. It then follows that $L \subseteq I$ whence $L=I$.

Now suppose that $c=0$. Then

$$
[H, \alpha H+\beta E]=\alpha[H, H]+\beta[H, E]=\beta F \in I \Longrightarrow F \in I
$$

It then follows that $[H, F]=-2 H \in I$ and so $H \in I$. Similarly, $[E, F]=2 E$ so $E \in I$. Hence $L \subseteq I$ whence $L=I$ in this case also. We thus see that the only ideals of L are $\{0\}$ and L whence L is simple.

Example 6.5. $L=\mathfrak{g l}(n, \mathbb{F})=\operatorname{Mat}(n, \mathbb{F})$ is reductive. Indeed, given any $A \in L$ we can decompose it into the form

$$
A=\frac{1}{n} \operatorname{Tr}(A) \mathbb{1}_{n}+\left(A-\frac{1}{n} \operatorname{Tr}(A) \mathbb{1}_{n}\right)
$$

the first term in this decomposition is clearly in $Z(L)$ since it is a multiple of the identity matrix. The second term is clearly in $\mathfrak{s l}(n, \mathbb{F})$. Since $\mathfrak{s l}(n, \mathbb{F})$ is simple, any proper solvable ideal of L must lie in $Z(L)$ whence L is reductive.

Definition 6.6. Let L be a Lie algebra and $\rho: L \rightarrow \operatorname{End}(V)$ a representation of L on an \mathbb{F}-vector space. We can define a bilinear form

$$
\begin{aligned}
B_{\rho}: L \times L & \rightarrow \mathbb{F} \\
(X, Y) & \mapsto \operatorname{Tr}(\rho(X) \circ \rho(Y))
\end{aligned}
$$

Proposition 6.7. Let L be a Lie algebra and ρ_{V} a representation of L. Then B_{ρ} is symmetrix and invariant:

$$
B_{\rho}([X, Y], Z)=B_{\rho}(X,[Y, Z])
$$

for all $X, Y, Z \in L$.
Proof. Let $X, Y \in L$. Since the trace is invariant under cyclic permutation, we have

$$
B_{\rho}(X, Y)=\operatorname{Tr}(\rho(X) \circ \rho(Y))=\operatorname{Tr}(\rho(Y) \circ \rho(X))=B_{\rho}(Y, X)
$$

Now let $Z \in L$. We have

$$
\begin{aligned}
B_{\rho}([X, Y], Z) & =\operatorname{Tr}(\rho([X, Y]) \circ \rho(Z)) \\
& =\operatorname{Tr}([\rho(X), \rho(Y)] \circ \rho(Z)) \\
& =\operatorname{Tr}((\rho(X) \circ \rho(Y)-\rho(Y) \circ \rho(X)) \circ \rho(Z)) \\
& =\operatorname{Tr}(\rho(X) \circ \rho(Y) \circ \rho(Z))-\operatorname{Tr}(\rho(Y) \circ \rho(X) \circ \rho(Z)) \\
& =\operatorname{Tr}(\rho(X) \circ \rho(Y) \circ \rho(Z))-\operatorname{Tr}(\rho(X) \circ \rho(Z) \circ \rho(Y)) \\
& =\operatorname{Tr}(\rho(X) \circ \rho(Y) \circ \rho(Z)-\rho(X) \circ \rho(Z) \circ \rho(Y)) \\
& =\operatorname{Tr}(\rho(X) \circ[\rho(Y), \rho(Z)]) \\
& =\operatorname{Tr}(\rho(X) \circ \rho([Y, Z])) \\
& =B_{\rho}(X,[Y, Z])
\end{aligned}
$$

Proposition 6.8. Let L be a Lie algebra. Then given $X \in L$, the adjoint action $\operatorname{ad}_{X}(Z)=$ $[X, Z]$ is a representation of L on itself.

Proof. We need to show that

$$
\operatorname{ad}: L \rightarrow \operatorname{End}(L) X \mapsto \operatorname{ad}_{X}
$$

is a homomorphism of Lie algebras. It is clearly a linear map by linearity of the Lie bracket. Note that the Lie bracket in $\operatorname{End}(L)$ is given by the commutator of endomorphisms. We need to show that $\operatorname{ad}_{[X, Y]}=\left[\operatorname{ad}_{X}, \operatorname{ad}_{Y}\right]$. For all $Z \in L$, the Jacobi identity implies

$$
\begin{aligned}
\operatorname{ad}_{[X, Y]}(Z)=[[X, Y], Z]=-[Z,[X, Y]]=[X,[Y, Z]]+[Y,[Z, X]] & =[X,[Y, Z]]-[Y,[X, Z]] \\
& =\operatorname{ad}_{X} \circ \operatorname{ad}_{Y}(Z)-\operatorname{ad}_{Y} \circ \operatorname{ad}_{X}(Z)
\end{aligned}
$$

as required.
Definition 6.9. Let L be a Lie algebra, $X \in L$ and $\operatorname{ad}_{X}: L \rightarrow \operatorname{End}(L)$ the adjoint representation of L on itself. We define the Killing form of L to be $\kappa_{L}=B_{\text {ad }}$.

Proposition 6.10. Let $\left(L_{1},[\cdot, \cdot]_{1}\right)$ and $\left(L_{2},[\cdot, \cdot]_{2}\right.$ be Lie algebras and $\varphi: L_{1} \rightarrow L_{2}$ an isomorphism of Lie algebras. Then

$$
\kappa_{L_{2}}(\varphi(X), \varphi(Y))=\kappa_{L_{1}}(X, Y)
$$

for all $X, Y \in L_{1}$.
Proof. Let $X, Y \in L_{1}$. We have that

$$
\kappa_{L_{2}}(\varphi(X), \varphi(Y))=\operatorname{Tr}\left(\operatorname{ad}_{\varphi(X)} \circ \operatorname{ad}_{\varphi}(Y)\right)
$$

Now let $Z \in L_{1}$ and let $Z^{\prime}=\varphi(Z)$. Observe

$$
\operatorname{ad}_{\varphi(X)}\left(Z^{\prime}\right)=\left[\varphi(X), Z^{\prime}\right]_{2}=[\varphi(X), \varphi(Z)]_{2}=\varphi\left([X, Z]_{1}\right)=\varphi \circ \operatorname{ad}_{X}(Z)=\varphi \circ \operatorname{ad}_{X} \circ \varphi^{-1}\left(Z^{\prime}\right)
$$

We thus see that $\operatorname{ad}_{\varphi(X)}=\varphi \circ \operatorname{ad}_{X} \circ \varphi^{-1}$. It then follows that

$$
\begin{aligned}
\kappa_{L_{2}}(\varphi(X), \varphi(Y)) & =\operatorname{Tr}\left(\varphi \circ \operatorname{ad}_{X} \circ \varphi^{-1} \circ \varphi \circ \operatorname{ad}_{Y} \circ \varphi^{-1}\right) \\
& =\operatorname{Tr}\left(\varphi \circ \operatorname{ad}_{X} \circ \operatorname{ad}_{Y} \circ \varphi^{-1}\right) \\
& =\operatorname{Tr}\left(\operatorname{ad}_{X} \circ \operatorname{ad}_{Y}\right) \\
& =\kappa_{L_{1}}(X, Y)
\end{aligned}
$$

Lemma 6.11. Let L be a Lie algebra and κ its Killing form. If $I \subseteq L$ is an ideal then

$$
I^{\perp}=\{X \in L \mid \kappa(X, Y)=0 \forall y \in I\}
$$

is an ideal of L.
Proof. Let $Y \in I^{\perp}$. We need to show that $[X, Y] \in I^{\perp}$ for all $X \in L$. For all $Z \in I$, we have

$$
\kappa([X, Y], Z)=-\kappa([Y, X], Z)=-\kappa(Y,[X, Z])=0
$$

where we have used the invariance of κ and the fact that $[X, Z] \in I$. Thus $[X, Y] \in I^{\perp}$.
Theorem 6.12 (Cartan's Criterion). Let L be a Lie algebra and κ its Killing form. Then

1. L is solvable if and only if $\kappa(X, Y)=0$ for all $x \in L, Y \in[L, L]$.
2. L is semisimple if and only if κ is non-degenerate.

Proof. Omitted.
Corollary 6.13. Let L be a Lie algebra. Then

1. If L is semisimple and $I \subseteq L$ is an ideal then $L=I \oplus I^{\perp}$.
2. L is semisimple if and only if L is a direct sum of simple Lie algebras. Such a direct summand decomposition is uniquely determined by L.
3. If L is semisimple then $L=[L, L]$.
4. If $L=\bigoplus_{i} L_{i}$ is semisimple then any ideal of L is a direct sum of some of the L_{i}.
5. If L is semisimple then any ideal, quotient and homomorphic image of L is also semisimple.
Proof.
Part 1: Let $J=I \cap I^{\perp}$. Then $\left.\kappa_{L}\right|_{J}=0$ by the definition of I^{\perp}. It then follows that J is solvable by Cartan's Criterion. Since L is semisimple, $\operatorname{rad}(L)=\{0\}$ and so $I \cap I^{\perp}=J=$ $\{0\}$. Furthermore, $\operatorname{dim} I^{\perp}=\operatorname{dim} L-\operatorname{dim} I$ so $L=I \oplus I^{\perp}$.
Part 2: First suppose that L is semisimple. Then we may apply Part 1 repeatedly until each direct summand has no non-trivial ideals. Conversely, suppose that L admits a direct summand decomposition $L=\bigoplus_{i} L_{i}$ into simple Lie algebras. Then the Killing form of L is given by the sum of the Killing forms of the L_{i}. Since any simple Lie algebra is semisimple, the Killing form of each L_{i} is non-degenerate whence the Killing form of L is non-degenerate. Applying Cartan's Criterion again, we see that L is semisimple.
Part 3: \quad Since L is the direct sum of simple Lie algebras L_{i} and each L_{i} satisfies $L_{i}=\left[L_{i}, L_{i}\right]$, the same must be true of L by linearity of the Lie bracket.
Part 4: We shall prove this by induction on the number of direct summands in the decomposition of L into simple Lie algebras. Suppose L admits the decomposition $L=\bigoplus_{i=1}^{k} L_{i}$. First suppose that $k=1$. Then L is simple and its only ideals are $\{0\}$ and L which both appear in the direct sum decomposition of L (trivially). Now suppose the statement holds true for $k-1$. Let $\pi_{k}: L \rightarrow L_{k}$ be the projection of L onto its $k^{t h}$ direct summand. Then $\pi_{k}(I) \subseteq L_{k}$ is an ideal. Since L_{k} is simple, either $\pi_{K}(I)=\{0\}$ or $\pi_{K}(I)=L_{k}$. In the former case, it follows that $I \subseteq L_{1} \oplus \cdots \oplus L_{k-1}$. Applying the induction hypothesis, we see that I is equal to a direct sum of some of these summands. In the second case we have that $\left[L_{k}, I\right]=\left[L_{k}, \pi_{k}(I)\right]=\left[L_{k}, L_{k}\right]=L_{k}$. Since I is an ideal, it follows that $L_{k} \subseteq I$. Hence $I=L_{k} \oplus I^{\prime}$ for some $I^{\prime} \in L_{1} \oplus \cdots \oplus L_{k-1}$. The claim then follows by again invoking the induction hypothesis.

7 Complexification and Real Forms

Definition 7.1. Let V be an \mathbb{R}-vector space. We define the complexification of V, denoted $V_{\mathbb{C}}$ to be the \mathbb{C}-vector space given by $V_{\mathbb{C}}=V \times V$ with compontent wise addition and scalar multiplication

$$
(a+i b)\left(v_{1}, v_{2}\right)=\left(a v_{1}-b v_{2}, b v_{1}+a v_{2}\right)
$$

for $a, b \in \mathbb{R}$. We shall use the notation $\left(v_{1}, v_{2}\right)=v_{1}+i v_{2}$.
Remark. If \mathfrak{g} is an \mathbb{R}-Lie algebra then $\mathfrak{g}_{\mathbb{C}}$ is a complex Lie algebra. Indeed, all we have to do is extend $[\cdot, \cdot]$ to be \mathbb{C}-bilinear:

$$
\left[v_{1}+i v_{2}, w_{1}+i w_{2}\right]=\left[v_{1}, w_{1}\right]-\left[v_{2}, w_{2}\right]+i\left[v_{1}, w_{2}\right]+i\left[v_{2}, w_{1}\right]
$$

Furthermore, if $\varphi: \mathfrak{g} \rightarrow W$ is a linear map where W is a complex vecctor space then φ induces a mapping

$$
\varphi: \mathfrak{g}_{\mathbb{C}} \rightarrow W
$$

by setting $\varphi\left(v_{1}+i v_{2}\right)=\varphi\left(v_{1}\right)+i \varphi\left(v_{2}\right)$. In particular, a complex representation of \mathfrak{g} extends to a complex representation of $\mathfrak{g}_{\mathbb{C}}$. This then implies that the bilinear form B_{ρ} (and thus the Killing form) extend to $\mathfrak{g}_{\mathrm{C}}$.

Definition 7.2. Let \mathfrak{g} be a real Lie algebra and $\mathfrak{g}_{\mathbb{C}}$ its complexification. Then \mathfrak{g} is called a real form of $\mathfrak{g}_{\mathrm{C}}$.

Theorem 7.3. Let \mathfrak{g} be a Lie algebra. Then \mathfrak{g} is solvable (nilpotent, semisimple) if and only if $\mathfrak{g}_{\mathbb{C}}$ is solvable (nilpotent, semisimple).

Proof. Solvability and nilpotency concern vanishing of nested and repeated commutators. This happens over \mathbb{R} if and only if it happens over \mathbb{C}. For semisimplicity, note that $\kappa_{\mathfrak{g}}$ is non-degenerate if and only if $\kappa_{\mathfrak{g c}}$ is non-degenerate. We may thus appeal to Cartan's criterion to see that $\mathfrak{g}_{\mathbb{C}}$ is semisimple if and only if \mathfrak{g} is semisimple

Example 7.4. Let $\mathfrak{g}=\operatorname{Lie}(\mathrm{U}(n))=\left\{X \in \operatorname{Mat}(n, \mathbb{C}) \mid X=-X^{\dagger}\right\}$. Then $\mathfrak{g}_{\mathbb{C}}=\mathfrak{g l}(n, \mathbb{C})$. Indeed, if $A \in \mathfrak{g}_{\mathbb{C}}$ then we can write

$$
A=\frac{1}{2}\left(A+A^{\dagger}\right)+\frac{1}{2}\left(A-A^{\dagger}\right)
$$

The second term on the right hand side is clearly an element of $\operatorname{Lie}(\mathrm{U}(n))$ whereas the first term is an element of $i \operatorname{Lie}(\mathrm{U}(n))$.

8 Representation Theory of Lie Algebras

Definition 8.1. Let \mathfrak{g} be a Lie algebra and ρ_{V} a representation of \mathfrak{g}. We say that ρ_{V} is faithful if ker $\rho=\{0\}$.

Definition 8.2. Let \mathfrak{g} be a Lie algebra and $\rho_{V_{1}}, \rho_{V_{2}}$ representations of \mathfrak{g}. A linear map $f: V_{1} \rightarrow V_{2}$ is said to be an intertwiner between $\rho_{V_{1}}$ and $\rho_{V_{2}}$ if

$$
\rho_{V_{2}}(X) \circ f=f \circ \rho_{V_{1}}(X)
$$

for all $X \in \mathfrak{g}$.

Definition 8.3. Let \mathfrak{g} be a Lie algebra and $\rho_{V_{1}}, \rho_{V_{2}}$ representations of \mathfrak{g}. We say that $\rho_{V_{1}}$ and $\rho_{V_{2}}$ are equivalent if there exists an invertible intertwiner between them.

Example 8.4. Let \mathfrak{g} be a Lie algebra. Then we have the trivial representation $\rho: \mathfrak{g} \rightarrow$ $\operatorname{End}(\mathbb{C})$ defined by $\rho(x)=0$ for all $x \in \mathfrak{g}$.

Example 8.5. Let $\mathfrak{g} \subseteq \operatorname{Mat}(n, \mathbb{F})$ be a Lie algebra. Then we have the fundamental given by

$$
\begin{aligned}
\rho: \mathfrak{g} & \rightarrow \operatorname{End}\left(\mathbb{F}^{n}\right) \\
g & \mapsto g
\end{aligned}
$$

Definition 8.6. Let \mathfrak{g} be a Lie algebra and $\rho_{V_{1}}, \rho_{V_{2}}$ be representations of \mathfrak{g}. We define the direct sum representation, denoted $\rho_{V_{1}} \oplus \rho_{V_{2}}$ be the representation of \mathfrak{g} on $V_{1} \oplus V_{2}$ given by $\rho(x)\left(v_{1}, v_{2}\right)=\left(\rho_{V_{1}}(x) v_{1}, \rho_{V_{2}}(x) v_{2}\right)$.

Lemma 8.7. Let \mathfrak{g} be a Lie algebra and $\rho_{V_{1}}, \rho_{V_{2}}$ representations of \mathfrak{g}. If $f: V_{1} \rightarrow V_{2}$ is an intertwiner between $\rho_{V_{1}}$ and $\rho_{V_{2}}$ then $\operatorname{ker} f$ and $\operatorname{im} f$ are invariant subspaces of V_{1} and V_{2} respectively.

Proof. Let $x \in \mathfrak{g} . v_{1} \in \operatorname{ker} f$ if and only if $f\left(v_{1}\right)=0$. Then $\rho_{V_{1}}(x) v_{1} \in \operatorname{ker} f$. Indeed, we have

$$
f\left(\rho_{V_{1}}(x) v_{1}\right)=\rho_{V_{2}}(x) f\left(v_{1}\right)=0
$$

Furthermore, $v_{2} \in \operatorname{im} f$ if and only if there exists $v_{1} \in V_{1}$ such that $f\left(v_{1}\right)=v_{2}$. Then

$$
\rho_{V_{2}}(x) v_{2}=\rho_{V_{2}}(x) f\left(v_{1}\right)=f\left(\rho_{V_{1}}(x) v_{1}\right) \in \operatorname{im} f
$$

Hence they are both invariant subspaces of their respective ambient spaces.
Theorem 8.8 (Schur's Lemma). Let \mathfrak{g} be a Lie algebra.

1. If $\rho_{V_{1}}, \rho_{V_{2}}$ are irreducible representations of \mathfrak{g} and $f: V_{1} \rightarrow V_{2}$ is an intertwiner between them then either $f \equiv 0$ or f is an isomorphism.
2. If ρ_{V} is an irreducible representation of \mathfrak{g} on a \mathbb{C}-vector space V and $f: V \rightarrow V$ is a self-intertwiner of ρ_{1} then $f=\lambda \mathbb{1}_{V}$ for some $\lambda \in \mathbb{C}$.
3. If $\rho_{V_{1}}, \rho_{V_{2}}$ are complex representations of \mathfrak{g} and $f: V_{1} \rightarrow V_{2}, \bar{f}: V_{1} \rightarrow V_{2}$ are non-zero intertwiners between them then $f=\lambda \bar{f}$ for some $\lambda \in \mathbb{C}$.

Proof.

Part 1: By Lemma 8.7, ker f is an invariant subspace of V_{1}. Since $\rho_{V_{1}}$ is irreducible, we must either have that $\operatorname{ker} f=\{0\}$ or $\operatorname{ker} f=V_{1}$. In the first case, $\operatorname{ker} f$ is trivial whence f is injective. In the latter case, $f \equiv 0$. Furthermore, $\operatorname{im} f$ is an invariant subspace of V_{2}. Since $\rho_{V_{2}}$ is irreducible, either $\operatorname{im} f=\{0\}$ or $\operatorname{im} f=V_{2}$. In the first case, $f \equiv 0$ and in the second case, f is surjective. We thus have that either $f \equiv 0$ or f is surjective and injective whence it is an isomorphism.
Part 2: Since $f: V_{1} \rightarrow V_{1}$ is a linear map of \mathbb{C}-vector spaces, it has at least one eigenvector $v_{\lambda} \in V_{1}$ with eigenvalue $\lambda \in \mathbb{C}$. By definition, we have that $f \circ \rho_{V}=\rho_{V} \circ f$. Since $\mathbb{1}_{V}$ commutes with any linear map, we have that

$$
\left(f-\lambda \mathbb{1}_{V}\right) \circ \rho_{V}=\rho_{V} \circ\left(f-\lambda \mathbb{1}_{V}\right)
$$

and so $f-\lambda \mathbb{1}_{V}$ is also a self-intertwiner of ρ_{V}. Since ρ_{V} is irreducible, Part 1 implies that $f-\lambda \mathbb{1}_{V}$ is either the zero map or an isomorphism. But $f-\lambda \mathbb{1}_{V}$ cannot be an isomorphism since $\left(f-\lambda \mathbb{1}_{V}\right) v_{\lambda}=0$. Hence $f-\lambda \mathbb{1}_{V} \equiv 0$ and so $f=\lambda \mathbb{1}_{V}$.
Part 3: If f and \bar{f} are two non-zero intertwiners between $\rho_{V_{1}}$ and $\rho_{V_{2}}$ then f and \bar{f} are necessarily isomorphisms. This implies that f^{-1} exists. We claim that $f^{-1} \circ \bar{f}$ is a selfintertwiner of $\rho_{V_{1}}$. To this end, let $x \in \mathfrak{g}$. Note that f^{-1} is an intertwiner between $\rho_{V_{2}}$ and $\rho_{V_{1}}$. Then

$$
\rho_{V_{1}}(x) \circ f^{-1} \circ \bar{f}=f^{-1} \circ \rho_{V_{2}}(x) \circ \bar{f}=f^{-1} \circ \bar{f} \circ \rho_{V_{1}}
$$

and so $f^{-1} \circ \bar{f}$ is a self-intertwiner of $\rho_{V_{1}}$. Part 2 then implies that $f^{-1} \circ \bar{f}=\mathbb{1}_{V}$ whence $f=\lambda \bar{f}$ for some $\lambda \in \mathbb{C}$.

$9 \quad$ Representations of $\mathfrak{s l}(2, \mathbb{C})$

In this section, we aim to classify all finite-dimensional complex irreducible representations of $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$. Recall that

$$
\mathfrak{s l}(2, \mathbb{C})=\{A \in \operatorname{Mat}(2, \mathbb{C}) \mid \operatorname{Tr} A=0\}
$$

and has a \mathbb{R}-basis given by

$$
H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

These matrices satisfy the relations $[H, E]=2 E,[H, F]=-2 F,[E, F]=H$. Let $\rho_{V}: \mathfrak{g} \rightarrow$ $\operatorname{End}(V)$ be a representation of \mathfrak{g}. Given $x \in \mathfrak{g}$ and $v \in V$, we shall write $\rho_{V}(X) v=X \cdot v$ for short. Note that since V is a complex vector space, $\rho_{V}(H)$ necessarily has an eigenvector, say $v \neq 0 \in V$ with corresponding eigenvalue $\lambda: H \cdot v=\lambda v$.

Proposition 9.1. With notation as above, E and F are raising and lowering operators respectively. In other words, $E^{m} \cdot v=0$ or $E^{m} \cdot v$ is an eigenvector for $\rho_{V}(H)$ with eigenvalue $\lambda+2 m$. Similarly, $F^{m} \cdot v=0$ or $F^{m} \cdot v$ is an eigenvector for $\rho_{V}(H)$ with eigenvalue $\lambda-2 m$.

Proof. We first show that E is a raising operator. We shall prove this by induction on m. First suppose that $m=1$. We have that

$$
H \cdot E \cdot v=[H, E] \cdot v+E \cdot H \cdot v=2 E \cdot v+E \cdot(\lambda v)=2 E \cdot v+\lambda(E \cdot v)=(\lambda+2) E \cdot v
$$

Now suppose that the claim holds for $m-1$. By the induction hypothesis, we have

$$
\begin{aligned}
H \cdot E^{m} \cdot v=H \cdot E \cdot E^{m-1} v & =([H, E]+E \cdot H) \cdot E^{m-1} v \\
& =[H, E] \cdot E^{m-1} v+E \cdot H \cdot E^{m-1} v \\
& =2 E \cdot E^{m-1} v+E \cdot(\lambda+2(m-1)) E^{m-1} v \\
& =2 E^{m} v+(\lambda+2(m-1)) E^{m} v \\
& =(\lambda+2 m) E^{m} v
\end{aligned}
$$

The exact same argument follows through to show that F is a lowering operator.
Proposition 9.2. With notation as above, $\rho(H)$ can only have integer eigenvalues.

Proof. Note that since eigenvectors for different eigenvalues must be linearly independent and V is finite-dimensional, we must have that $E^{m} v=0$ for large enough m and $F^{k} v=0$ for large enough k. Let m be the smallest natural number such that $E^{m} v=0$ but $E^{m-1} v=v_{0} \neq$ 0 . Consider the sequence of vectors $v_{0}, v_{1}=F v_{0}, \ldots, v_{l}=F^{l} v_{0}, \ldots$ and also set $v_{-1}=0$. Let λ_{0} be such that $H \cdot v_{0}=\lambda_{0} v_{0}$. We first claim that $H \cdot v_{l}=\left(\lambda_{0}-2 l\right) v_{l}$. We prove this by induction on l. First suppose that $l=0$. Then, by definition, $H \cdot v_{0}=\lambda_{0} v_{0}$ and this satisfies the claim. Now suppose the claim holds true for $l-1$. We have

$$
\begin{aligned}
H \cdot v_{l}=H \cdot F^{l} \cdot v_{0}=H \cdot F \cdot F^{l-1} \cdot v_{0} & =([H, F]+F \cdot H) \cdot F^{l-1} v_{0} \\
& =[H, F] \cdot F^{l-1} \cdot v_{0}+F \cdot H \cdot F^{l-1} v_{0} \\
& =-2 F \cdot F^{l-1} \cdot v_{0}+F \cdot\left(\lambda_{0}-2(l-1)\right) F^{l-1} v_{0} \\
& =\left(\lambda_{0}-2 l\right) F^{l} v_{0} \\
& =\left(\lambda_{0}-2 l\right) v_{l}
\end{aligned}
$$

as required. We next claim that $E \cdot v_{l}=l\left(\lambda_{0}-l+1\right) v_{l-1}$. We shall again prove this by induction on l. First suppose that $l=0$. Then $E \cdot v_{0}=E^{m} v_{0}=0$ and so the claim holds. Now suppose it holds for $l-1$. We have that

$$
\begin{aligned}
E \cdot v_{l}=E \cdot F^{l} v_{0}=E \cdot F \cdot v_{k-1} & =([E, F]+F \cdot E) \cdot v_{l-1} \\
& =[E, F] \cdot v_{l-1}+F \cdot E \cdot v_{l-1} \\
& =H \cdot v_{l-1}+F \cdot(l-1)\left(\lambda_{0}-l+2\right) v_{l-1} \\
& =\left(\lambda_{0}-2 l+2\right) v_{l-1}+(l-1)\left(\lambda_{0}-l+2\right) v_{l-1} \\
& =\left(\lambda_{0}-2 l+2+l \lambda_{0}-\lambda_{0}-l^{2}+l+2 l-2\right) v_{l-1} \\
& =\left(l \lambda_{0}-l^{2}+l\right) v_{l-1} \\
& =l\left(\lambda_{0}-l+1\right) v_{l-1}
\end{aligned}
$$

as required. Since V is finite-dimensional and v_{l} are all eigenvectors of H with distinct eigenvalues, $v_{k}=0$ for large enough k. Assume that $v_{k-1}=0$. Then

$$
E \cdot v_{k}=k\left(\lambda_{0}-k+1\right) v_{k-1}
$$

Observe that, since $v_{k-1} \neq 0$ then $E \cdot v_{k} \neq 0$ if $\lambda_{0} \notin \mathbb{Z}$. But then this would imply that $v_{k} \neq 0$ which is a contradiction. Hence we must have that $\lambda_{0}=0$.

Proposition 9.3. Let $g=\mathfrak{s l}(2, \mathbb{C})$. For each $n=1,2, \ldots$, we have a representation of \mathfrak{g} on $V_{n}=\mathbb{C}^{n}$ given by

$$
\begin{aligned}
\rho_{n}(H) e_{m} & =(n-1-2 m) e_{m} \\
\rho_{n}(E) e_{m} & =m(n-m) e_{m-1} \\
\rho_{n}(F) e_{m} & =e_{m+1}
\end{aligned}
$$

where e_{0}, \ldots, e_{n-1} are the standard basis vecotrs of \mathbb{C}^{n} and we have set $e_{-1}=0$ and $e_{n}=0$.
Proof. We must first check that $\rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ is a homomorphism of Lie algebras. We have that

$$
\begin{aligned}
\rho_{n}([H, E]) e_{m} & =\rho_{n}(2 E) e_{m}=2 m(n-m) e_{m-1} \\
{\left[\rho_{n}(H), \rho_{n}(E)\right] e_{m} } & =\rho_{n}(H) \rho_{n}(E) e_{m}-\rho_{n}(E) \rho_{n}(H) e_{m} \\
& =m(n-m) \rho_{n}(H) e_{m-1}-(n-1-2 m) \rho_{n}(E) e_{m} \\
& =m(n-m)(n+1-2 m) e_{m-1}-m(n-1-2 m)(n-m) e_{m-1} \\
& =m(n-m)(n+1-2 m-n+1+2 m) e_{m-1} \\
& =2 m(n-m) e_{m-1}
\end{aligned}
$$

and so $\rho_{n}([H, E])=\left[\rho_{n}(H), \rho_{n}(E)\right]$. We can similarly check for the other commutation relations to see that ρ_{n} is a homomorphism of Lie algebras.

We now show that ρ_{n} is an irreducible representation of \mathfrak{g}. Let $W \subseteq V_{n}$ be a non-zero invariant subspace. Then $\left.\rho_{n}(H)\right|_{W}$ has an eigenvector $0 \neq v \in W$. But then v is also an eigenvector of $\rho_{n}(H)$ since the e_{m} are a basis of V_{n} consisting of $\rho_{n}(H)$-eigenvectors with distinct eigenvalues, $v=e_{m}$ for some $0 \leq m \leq n-1$. Since W is invariant, it contains $v=e_{m}, E^{l} \cdot e_{m}, F^{k} \cdot e_{m}$ for all l, k and so it contains the whole basis. We must therefore have that $W=V_{n}$.

Proposition 9.4. With notation as above, any finite-dimensional irreducible representation V of $\mathfrak{s l}(2, \mathbb{C})$ is equivalent to one of the V_{n}.

Proof. We know that V contains $0 \neq v_{0}$ such that $E v_{0}=0, H \cdot v_{0}=\lambda_{0} v_{0}$ for some $\lambda_{0} \in \mathbb{Z}$ and that the sequence $v_{0}, v_{1}=F \cdot v_{0}, \ldots, v_{k}=F^{k} \cdot v_{0}$ must terminate. The $v_{0}, v_{1}, \ldots, v_{k}$ span an invariant subspace of V and are all linearly independent. Hence they must be a basis for V. We can then define a linear map

$$
\begin{aligned}
\varphi: & V \rightarrow \mathbb{C}^{\operatorname{dim} V} \cong V_{\operatorname{dim} V} \\
& v_{l} \mapsto e_{l}
\end{aligned}
$$

This is an injective intertwiner so Schur's Lemma implies that φ is an isomorphism.

10 Cartan Subalgebras and Root Space Decomposition

Definition 10.1. Let \mathfrak{g} be a finite-dimensional semisimple complex Lie algebra. A sub-Lie algebra $\mathfrak{h} \subseteq \mathfrak{g}$ is a Cartan subalgebra of \mathfrak{g} if

1. $H \in \mathfrak{h}$ implies that ad_{H} is diagonalisable.
2. $\mathfrak{h}=C(h)=\{x \in \mathfrak{g} \mid[x, H]=0 \forall H \in \mathfrak{h}\}$. In other words, \mathfrak{h} is equal to its own centraliser.

Remark. Let \mathfrak{g} be a finite-dimensional semisimple complex Lie algebra and $\mathfrak{h} \subseteq \mathfrak{g}$ a Cartan subalgebra. Clearly, the second condition implies that \mathfrak{h} is abelian. This then implies that ad_{H} are all simultaneously diagonalisable.

Theorem 10.2. Let \mathfrak{g} be a finite-dimensional semisimple complex Lie algebra. Then \mathfrak{g} has a non-trivial Cartan subalgebra \mathfrak{h} and such a Cartan subalgebra is unique up to isomorphism.

Proof. Omitted.
Definition 10.3. Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra and $\mathfrak{h} \subseteq \mathfrak{g}$ a Cartan subalgebra. Since ad_{H} are simultaneously diagonalisable for all $H \in \mathfrak{h}$, they have a common eigenvector, say $x \in \mathfrak{g}$. Then there exists $\alpha \in \mathfrak{h}^{*}$ such that

$$
\operatorname{ad}_{H}(x)=\alpha(H) x
$$

for all $H \in \mathfrak{h}$. We say that α is a root of \mathfrak{g} if $\alpha \neq 0$ and

$$
\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g} \mid[H, x]=\alpha(H) x \forall H \in \mathfrak{h}\}
$$

is not $\{0\}$. In this case, we refer to \mathfrak{g}_{α} as a root space. The collection of all roots of \mathfrak{g} is referred to as a root system of \mathfrak{g} and is denoted $\Phi(\mathfrak{g}, \mathfrak{h})$.

Remark. We may decompose \mathfrak{g} into simultaneous eigenspaces of elements of \mathfrak{h} to get the root space decomposition of \mathfrak{g} :

$$
\mathfrak{g}=\mathfrak{g}_{0} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

Example 10.4. Consider $\mathfrak{g}=\mathfrak{s l}(n, \mathbb{C})=\{A \in \operatorname{Mat}(n, \mathbb{C}) \mid \operatorname{Tr} A=0\}$. We first claim that

$$
\mathfrak{h}=\left\{A=\operatorname{diag}\left(x_{11}, \ldots, x_{n n}\right) \mid \sum_{i=1}^{n} x_{i i}=0, x_{i i} \in \mathbb{C}\right\}
$$

is a Cartan subalgebra of \mathfrak{g}. Consider the basis of matrix units $\left(E_{i j}\right)_{m n}=\delta_{m i} \delta_{n j}$. Then given $H \in \mathfrak{h}$ we have

$$
\left[H, E_{i j}\right]=H E_{i j}-E_{i j} H=x_{i i} E_{i j}-x_{j j} E_{i j}=\left(x_{i i}-x_{j j}\right) E_{i j}
$$

and so ad_{H} is diagonal with respect to this basis. \mathfrak{h} is clearly abelian so it suffices to show that $C(\mathfrak{h}) \subseteq \mathfrak{h}$. Note that a basis for \mathfrak{g} is given by the union of basis elements for \mathfrak{h} and the matrix units $E_{i j}$. Recall that

$$
C(\mathfrak{h})=\{A \in \mathfrak{g} \mid[H, x]=0 \forall H \in \mathfrak{h}\}
$$

Since $\left[H, E_{i j}\right]=\left(x_{i i}-x_{j j}\right) E_{i j}$, we can always find a diagonal matrix $H \in \mathfrak{h}$ such that $\left[H, E_{i j}\right]=0$ for $i \neq j$. Hence the matrix units $E_{i j} \notin C(\mathfrak{h})$. Thus the only possible basis elements in $C(\mathfrak{h})$ are the ones of \mathfrak{h} whence $C(\mathfrak{h}) \subseteq \mathfrak{h}$. Hence \mathfrak{h} is a Cartan subalgebra of \mathfrak{g}.

Now define $e_{i} \in \mathfrak{h}^{*}$ by $e_{i}(H)=x_{i i}$. Then $\operatorname{ad}_{H}\left(E_{i j}\right)=\left(e_{i}-e_{j}\right)(H) E_{i j}$ and so the roots of \mathfrak{g} are

$$
\Phi=\left\{e_{i}-e_{j} \mid i \neq j\right\}
$$

We can thus find the root spaces:

$$
\mathfrak{g}_{e_{i}-e_{j}}=\left\{x \in \mathfrak{g} \mid[H, x]=\left(e_{i}-e_{j}\right)(H) x \forall H \in \mathfrak{h}\right\}=\mathbb{C} E_{i j}
$$

Proposition 10.5. Let \mathfrak{g} be a finite-dimensional semisimple complex Lie algebra and $\mathfrak{h} \subseteq \mathfrak{g}$ a Cartan subalgebra so that

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

Then

1. $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \subseteq \mathfrak{g}_{\alpha+\beta}$.
2. If $x \in \mathfrak{g}_{\alpha}, y \in \mathfrak{g}_{\beta}$ then $\kappa(x, y)=0$ unless $\alpha+\beta=0$ for all $\alpha, \beta \in\{0\} \cup \Phi$.
3. $\mathfrak{h}^{*}=\operatorname{span}_{\mathbb{C}}(\Phi)$.

Proof.
Part 1: Let $x \in \mathfrak{g}_{\alpha}, y \in \mathfrak{g}_{\beta}$. Then for all $H \in \mathfrak{h}$ we have

$$
\begin{aligned}
{[H,[x, y]] } & =-[y,[H, x]]-[x,[y, H]] \\
& =-[y,[H, x]]+[x,[H, y]] \\
& =-[y, \alpha(H) x]+[x, \beta(H) y] \\
& =-\alpha(H)[y, x]+\beta(H)[x, y] \\
& =\alpha(H)[x, y]+\beta(H)[x, y] \\
& =(\alpha(H)+\beta(H))[x, y]
\end{aligned}
$$

and so $[x, y] \in \mathfrak{g}_{\alpha+\beta}$ whence $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \subseteq \mathfrak{g}_{\alpha+\beta}$.
Part 2: First suppose that $\alpha+\beta \neq 0$. Then there exists $H \in \mathfrak{h}$ such that $\alpha(H)+\beta(H) \neq 0$. Then

$$
\begin{aligned}
(\alpha(H)+\beta(H)) \kappa(x, y)=\kappa(\alpha(H) x, y)+\kappa(x, \beta(H), y) & =\kappa([H, x], y)+\kappa(x,[H, y]) \\
& =-\kappa([x, H], y)+\kappa(x,[H, y]) \\
& =-\kappa(x,[H, y])+\kappa(x,[H, y])=0
\end{aligned}
$$

where we have used Part 1 and the fact that κ is non-degenerate. Now suppose that $\alpha+\beta=0$. We want to show that $\kappa(x, y) \neq 0$ for $x \in \mathfrak{g}_{\alpha}, y \in \mathfrak{g}_{\beta}$. But this is equivalent to showing that κ restricted to $\mathfrak{g}_{0}=\mathfrak{h}$ is non-degenerate. Let $y \in \mathfrak{h}$. Since \mathfrak{g} is semisimple, Cartan's criterion implies that κ is non-degenerate. Then there exists $\mathfrak{x} \in \mathfrak{g}$ such that $\kappa(x, y) \neq 0$. Now write

$$
x=x_{0}+\sum_{\alpha \in \Phi} x_{\alpha}
$$

for some $x_{0} \in \mathfrak{h}$ and $x_{\alpha} \in \mathfrak{g}_{\alpha}$. By Part 2, $\kappa(x, y)=\kappa\left(x_{0}, y\right)$. Hence for all $y \in \mathfrak{h}$, we can find an $x_{0} \in \mathfrak{h}$ such that $\kappa\left(x_{0}, y\right) \neq 0$.
Part 3: Assume $\operatorname{span}_{\mathbb{C}}(\Phi) \subsetneq \mathfrak{h}^{*}$. We first claim that there exists non-zero $H \in \mathfrak{h}$ such that $\alpha(H)=0$ for all $\alpha \in \Phi$. Indeed let $\left\{v_{i}\right\}$ be a basis for \mathfrak{h}. Then there exists a canonical dual basis for \mathfrak{h}^{*}, say $\left\{v_{i}^{*}\right\}$ such that $v_{i}^{*}\left(v_{j}\right)=\delta_{i j}$. Since $\operatorname{span}_{\mathbb{C}}(\Phi)$ is a proper subspace of \mathfrak{h}^{*}, it must lack at least one of these canonical dual basis elements, say v_{i}^{*}. Then, clearly, v_{i} is a non-zero element of \mathfrak{h} such that $\alpha\left(v_{i}\right)=0$ for all $\alpha \in H$. It then follows that v_{i} commutes with all of $\bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$ as well as \mathfrak{h} and so v_{i} commutes with all of \mathfrak{g}. Hence $v_{i} \in Z(\mathfrak{g})$. But \mathfrak{g} is semisimple and so $Z(g)=\{0\}$ whence $v_{i}=0$. But this is a contradiction since v_{i} is a basis element of \mathfrak{h}. We must therefore have that $\operatorname{span}_{\mathbb{C}}(\Phi)=\mathfrak{h}^{*}$.

[^0]: ${ }^{2}$ here we are abusing notation slightly, interpret addition and multiplication by scalar of subspaces by what they intuitively should be

